2012, 2(1): 91-104. doi: 10.3934/naco.2012.2.91

Solvability of a class of thermal dynamical contact problems with subdifferential conditions

1. 

Institut d'Ingénierie Informatique de Limoges and LACO, URA-1586, 123 Avenue A. Thomas, 87060 Limoges Cedex

2. 

Université de La Réunion, Département Maths-Info, BP 7151, 15 Avenue René Cassin, 97715 Saint Denis Messag, cedex 09, La Réunion

Received  January 2011 Revised  August 2011 Published  March 2012

We study a class of dynamic thermal sub-differential contact problems with friction, for long memory visco-elastic materials, which can be put into a general model of system defined by a second order evolution inequality, coupled with a first order evolution equation. We present and establish an existence and uniqueness result, by using general results on first order evolution inequality, with monotone operators and fixed point methods.
Citation: Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91
References:
[1]

B. Awbi and O. Chau, Quasistatic Thermovisoelastic Frictional Contact Problem with Damped Response,, Applicable Analysis, 83 (2004), 635. doi: 10.1080/00036810410001657233. Google Scholar

[2]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Editura Academiei, (1976). Google Scholar

[3]

H. Brézis, Problèmes unilatéraux,, J. Math. Pures et Appli., 51 (1972), 1. Google Scholar

[4]

O. Chau and M. Rochdi, On a dynamic bilateral contact problem with friction for viscoelastic materials,, Int. J. of Appli. Math. and Mech., 2 (2006), 41. Google Scholar

[5]

P. G. Ciarlet, "Mathematical Elasticity, Vol. I, Three-Dimensional Elasticity,", North-Holland, (1988). Google Scholar

[6]

M. Cocou and G. Scarella, Existence of a solution to a dynamic unilateral contact problem for a cracked viscoelastic body,, C.R. Acad. Sci. Paris, 338 (2004), 341. Google Scholar

[7]

G. Duvaut and J. L. Lions, "Les Inéquations en Mécanique et en Physique,", Dunod, (1972). Google Scholar

[8]

Ch. Eck, J. Jarusek and M. Krbec, "Unilateral Contact Problems, Variational Methods and Existence Theorems,", Chapman and Hall, (2005). doi: 10.1201/9781420027365. Google Scholar

[9]

D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities, Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics,", Kluwer Academic Publishers, (2003). Google Scholar

[10]

J. Jarušek and Ch. Eck, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions,, Mathematical Models and Methods in Applied Sciences, 9 (1999), 11. doi: 10.1142/S0218202599000038. Google Scholar

[11]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity,", SIAM, (1988). doi: 10.1137/1.9781611970845. Google Scholar

[12]

J. L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,", Dunod et Gauthier-Villars, (1969). Google Scholar

[13]

J. Necas, J. Jarusek and J. Haslinger, On the solution of variational inequality to the Signorini problem with small friction,, Bolletino U.M.I., 17 (1980), 796. Google Scholar

[14]

J. Nečas and I. Hlaváček, "Mathematical Theory of Elastic and Elastoplastic Bodies: An introduction,", Elsevier, (1981). Google Scholar

[15]

P. D. Panagiotopoulos, "Inequality Problems in Mechanics and Applications,", Birkhäuser, (1985). doi: 10.1007/978-1-4612-5152-1. Google Scholar

[16]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering,", Springer-Verlag, (1993). Google Scholar

[17]

Eberhard Zeidler, "Nonlinear Functional Analysis and its Applications, II/A, Linear Monotone Operators,", Springer Verlag, (1997). Google Scholar

show all references

References:
[1]

B. Awbi and O. Chau, Quasistatic Thermovisoelastic Frictional Contact Problem with Damped Response,, Applicable Analysis, 83 (2004), 635. doi: 10.1080/00036810410001657233. Google Scholar

[2]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Editura Academiei, (1976). Google Scholar

[3]

H. Brézis, Problèmes unilatéraux,, J. Math. Pures et Appli., 51 (1972), 1. Google Scholar

[4]

O. Chau and M. Rochdi, On a dynamic bilateral contact problem with friction for viscoelastic materials,, Int. J. of Appli. Math. and Mech., 2 (2006), 41. Google Scholar

[5]

P. G. Ciarlet, "Mathematical Elasticity, Vol. I, Three-Dimensional Elasticity,", North-Holland, (1988). Google Scholar

[6]

M. Cocou and G. Scarella, Existence of a solution to a dynamic unilateral contact problem for a cracked viscoelastic body,, C.R. Acad. Sci. Paris, 338 (2004), 341. Google Scholar

[7]

G. Duvaut and J. L. Lions, "Les Inéquations en Mécanique et en Physique,", Dunod, (1972). Google Scholar

[8]

Ch. Eck, J. Jarusek and M. Krbec, "Unilateral Contact Problems, Variational Methods and Existence Theorems,", Chapman and Hall, (2005). doi: 10.1201/9781420027365. Google Scholar

[9]

D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities, Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics,", Kluwer Academic Publishers, (2003). Google Scholar

[10]

J. Jarušek and Ch. Eck, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions,, Mathematical Models and Methods in Applied Sciences, 9 (1999), 11. doi: 10.1142/S0218202599000038. Google Scholar

[11]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity,", SIAM, (1988). doi: 10.1137/1.9781611970845. Google Scholar

[12]

J. L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,", Dunod et Gauthier-Villars, (1969). Google Scholar

[13]

J. Necas, J. Jarusek and J. Haslinger, On the solution of variational inequality to the Signorini problem with small friction,, Bolletino U.M.I., 17 (1980), 796. Google Scholar

[14]

J. Nečas and I. Hlaváček, "Mathematical Theory of Elastic and Elastoplastic Bodies: An introduction,", Elsevier, (1981). Google Scholar

[15]

P. D. Panagiotopoulos, "Inequality Problems in Mechanics and Applications,", Birkhäuser, (1985). doi: 10.1007/978-1-4612-5152-1. Google Scholar

[16]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering,", Springer-Verlag, (1993). Google Scholar

[17]

Eberhard Zeidler, "Nonlinear Functional Analysis and its Applications, II/A, Linear Monotone Operators,", Springer Verlag, (1997). Google Scholar

[1]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[2]

Piotr Gwiazda, Filip Z. Klawe, Agnieszka Świerczewska-Gwiazda. Thermo-visco-elasticity for the Mróz model in the framework of thermodynamically complete systems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 981-991. doi: 10.3934/dcdss.2014.7.981

[3]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[4]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[5]

Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039

[6]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[7]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[8]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Fatigue accumulation in a thermo-visco-elastoplastic plate. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2091-2109. doi: 10.3934/dcdsb.2014.19.2091

[9]

Ahmed Tarajo Buba, Lai Soon Lee. Differential evolution with improved sub-route reversal repair mechanism for multiobjective urban transit routing problem. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 351-376. doi: 10.3934/naco.2018023

[10]

Marita Thomas, Chiara Zanini. Cohesive zone-type delamination in visco-elasticity. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1487-1517. doi: 10.3934/dcdss.2017077

[11]

M. Carme Leseduarte, Antonio Magaña, Ramón Quintanilla. On the time decay of solutions in porous-thermo-elasticity of type II. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 375-391. doi: 10.3934/dcdsb.2010.13.375

[12]

Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185

[13]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[14]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[15]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[16]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[17]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[18]

Zhong-Jie Han, Gen-Qi Xu. Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 57-77. doi: 10.3934/dcdsb.2012.17.57

[19]

Filippo Dell'Oro, Olivier Goubet, Youcef Mammeri, Vittorino Pata. A semidiscrete scheme for evolution equations with memory. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5637-5658. doi: 10.3934/dcds.2019247

[20]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]