Advanced Search
Article Contents
Article Contents

An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems

Abstract Related Papers Cited by
  • An iterative algorithm, which is called the integrated optimal control and parameter estimation algorithm, is developed for solving a discrete time nonlinear stochastic control problem. It is based on the integration of the principle of model-reality differences and Kalman filtering theory, where the dynamic integrated system optimization and parameter estimation algorithm are used interactively. In this approach, the weighted least-square output residual is included in the cost function by appropriately monitoring the weighted matrix. An improved linear quadratic Gaussian optimal control model, rather than the original optimal control problem, is solved. Subsequently, the model optimum is updated using the adjusted parameters induced by the differences between the real plant and the model used. These updated solutions converge to the true optimum, despite model-reality differences. For illustration, the optimal control of a nonlinear continuous stirred tank reactor problem is considered and solved by using the method proposed.
    Mathematics Subject Classification: Primary: 93E20, 93E11; Secondary: 93C10.


    \begin{equation} \\ \end{equation}
  • [1]

    V. M. Becerra, "Development and Applications of Novel Optimal Control Algorithms," Ph. D. thesis, City University, UK, 1994.


    V. M. Becerra and P. D. Roberts, Dynamic integrated system optimization and parameter estimation for discrete time optimal control of nonlinear systems, Int. J. Control, 63 (1996), 257-281.doi: 10.1080/00207179608921843.


    V. M. Becerra and P. D. Roberts, Application of a novel optimal control algorithm to a benchmark fed-batch fermentation process, Trans. Inst. Measurement Control, 20 (1998), 11-18.doi: 10.1177/014233129802000103.


    A. E. Bryson and Y. C. Ho, "Applied Optimal Control," Hemisphere Publishing Company, New York, 1975.


    A. E. Bryson, "Applied Linear Optimal Control, Examples and Algorithms," Cambridge University Press, 2002.


    P. D. Christofides and N. H. El-Farra, "Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time-Delays," Springer-Verlag, New York, 2005.


    T. E. Dabbous, Adaptive control of nonlinear systems using fussy systems, Journal of Industrial and Management Optimization, 6 (2010), 861-889.doi: 10.3934/jimo.2010.6.861.


    Y. Y. Haimes and D. A. Wismer, A computational approach to the combined problem of optimization and parameter estimation, Automatica, 8 (1972), 337-347.doi: 10.1016/0005-1098(72)90052-0.


    M. H. Hu, Q. Gao and H. H. Shao, Optimal control of a class of non-linear discrete-continuous hybrid systems, in "Proceedings of the 6th World Congress on Intelligent Control and Automatic," 21-23 June, 2006, Dalian, China, 835-838.


    M. H. Hu, Y. S. Wang and H. H Shao, Costate prediction based optimal control for non-linear hybrid systems, ISA Transactions, 47 (2008), 113-118.doi: 10.1016/j.isatra.2007.06.001.


    S. L. Kek, K. L. Teo and M. I. A. Aziz, An integrated optimal control algorithm for discrete-time nonlinear stochastic system, International Journal of Control, 83 (2010), 2536-2545.doi: 10.1080/00207179.2010.531766.


    J. S. Kong and B. W. Wan, The study of integrated optimal control approach for complex system under network environment, Computing Technology and Automation, 22 (2003), 23-25.


    F. L. Lewis, "Optimal Control," John Wiley and Sons, Inc, New York, 1986.


    F. L. Lewis, "Applied Optimal Control and Estimation: Digital Design and Implementation," Prentice Hall, Inc, 1992.


    J. M. Li, B. W. Wan and Z. L. Huang, Optimal control of nonlinear discrete systems with model-reality differences, Control Theory and Applications, 16 (1999), 32-37.


    R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems, IEEE Transactions on Automatic Control, 54 (2009), 2455-2460.doi: 10.1109/TAC.2009.2029310.


    R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257.doi: 10.1016/j.automatica.2009.05.029.


    W. H. Ray, "Advanced Process Control," McGraw-Hill, New York, 1989.


    S. Richchardson and S. Wang, The viscosity approximation to Hamiltonian-Jacobi-Bellman equation in optimal feedback control: upper bounds for extended domains, Journal of Industrial and Management Optimization, 6 (2010), 161-175.doi: 10.3934/jimo.2010.6.161.


    P. D. Roberts, An algorithm for steady-state system optimization and parameter estimation, Int. J. Systems Science, 10 (1979), 719-734.doi: 10.1080/00207727908941614.


    P. D. Roberts and T. W. C. Williams, On an algorithm for combined system optimization and parameter estimation, Automatica, 17 (1981), 199-209.doi: 10.1016/0005-1098(81)90095-9.


    P. D. Roberts, Optimal control of nonlinear systems with model-reality differences, Proceedings of the 31st IEEE Conference on Decision and Control, 1 (1992), 257-258.


    P. D. Roberts and V. M. Becerra, Optimal control of a class of discrete-continuous non-linear systems decomposition and hierarchical structure, Automatica, 37 (2001), 1757-1769.doi: 10.1016/S0005-1098(01)00141-8.


    C. Z. Wu, K. L. Teo and V. Rehbock, Optimal control of piecewise affine systems with piecewise affine state feedback, Journal of Industrial and Management Optimization, 5 (2009), 737-747.doi: 10.3934/jimo.2009.5.737.


    Y. Zhang and S. Y. Li, DISOPE distributed model predictive control of cascade systems with network communication, Journal of Control Theory and Applications, 2 (2005), 131-138.doi: 10.1007/s11768-005-0005-6.

  • 加载中

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint