2013, 3(1): 161-173. doi: 10.3934/naco.2013.3.161

Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory

1. 

University of Bayreuth, Chair of Mathematics in Engineering Sciences, Bayreuth, D 95440, Germany

Received  January 2012 Revised  November 2012 Published  January 2013

The purpose of the present paper is to show that the most prominent results in optimal control theory, the distinction between state and control variables, the maximum principle, and the principle of optimality, resp. Bellman's equation are immediate consequences of Carathéodory's achievements published about two decades before optimal control theory saw the light of day.
Citation: Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161
References:
[1]

R. E. Bellman, The theory of dynamic programming,, Bull. Amer. Math. Soc., 60 (1954), 503.  doi: 10.1090/S0002-9904-1954-09848-8.  Google Scholar

[2]

R. E. Bellman, "Eye of a Hurricane, an Autobiography,", World Scientific Publishing Co Pte Ltd., (1984).   Google Scholar

[3]

H. Boerner, Carathéodorys Eingang zur Variationsrechnung,, Jahresbericht der Deutschen Mathematiker Vereinigung, 56 (1953), 31.   Google Scholar

[4]

V. G. Boltyanski, R. V. Gamkrelidze and L. S. Pontryagin, On the theory of optimal processes (in Russian),, Doklady Akademii Nauk SSSR, 110 (1956), 7.   Google Scholar

[5]

M. H. Breitner, The genesis of differential games in light of Isaacs' contributions,, J. of Optimization Theory and Applications, 124 (2005), 523.  doi: 10.1007/s10957-004-1173-0.  Google Scholar

[6]

C. Carathéodory, Die Methode der geodätischen Äquidistanten und das Problem von Lagrange,, Acta Mathematica, 47 (1926), 199.   Google Scholar

[7]

C. Carathéodory, "Variationsrechnung und Partielle Differentialgleichungen Erster Ordnung,", Teubner, (1935).   Google Scholar

[8]

C. Carathéodory, The beginning of research in the calculus of variations,, Osiris, 3 (1937), 224.   Google Scholar

[9]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order, Part 1, Part 2,", Holden-Day, (2001), 1965.   Google Scholar

[10]

C. Carathéodory, "Variationsrechnung und partielle Differentialgleichungen erster Ordnung,", With Contributions of H. Boerner and E. Hölder (edited, ().   Google Scholar

[11]

D. Carlson, An observation on two methods of obtaining solutions to Variational problems,, Journal of Optimization Theory and Applications, 114 (2002), 345.  doi: 10.1023/A:1016035718160.  Google Scholar

[12]

D. Carlson and G. Leitmann, Fields of extremals and sufficient conditions for the simplest problem of the calculus of variations,, Journal of Global Optimization, 40 (2008), 41.  doi: 10.1007/s10898-007-9171-z.  Google Scholar

[13]

D. Carlson and G. Leitmann, Fields of extremals and sufficient conditions for the simplest problem of the calculus of variations in $n$ variables,, in:, 33 (2009), 75.   Google Scholar

[14]

D. Carlson and G. Leitmann, An equivalent problem approach to absolute extrema for calculus of variations problems with differential constraints,, Dynamics of Continuous, 18 (2011), 1.   Google Scholar

[15]

M. R. Hestenes, "A General Problem in the Calculus of Variations with Applications to the Paths of Least Time,", Research Memorandum No. 100, (1123).   Google Scholar

[16]

R. P. Isaacs, "Games of Pursuit,", Paper No. P-257, (1951).   Google Scholar

[17]

R. P. Isaacs, Some fundamentals of differential games,, in, (1973), 25.   Google Scholar

[18]

G. Leitmann, A note on absolute extrema of certain integrals,, International Journal of Nonlinear Mechanics, 2 (1967), 55.  doi: 10.1016/0020-7462(67)90018-2.  Google Scholar

[19]

G. Leitmann, On a class of direct optimization problems,, Journal of Optimization Theory and Appplications, 108 (2001), 467.  doi: 10.1023/A:1017507006157.  Google Scholar

[20]

S. MacLane, The Applied Mathematics Group at Columbia in World War II,, in, (1988), 495.   Google Scholar

[21]

H. J. Pesch and R. Bulirsch, The maximum principle, Bellman's equation and Carathéodory's work,, J. of Optimization Theory and Applications, 80 (1994), 203.  doi: 10.1007/BF02192933.  Google Scholar

[22]

H. J. Pesch and M. Plail, The maximum principle of optimal control: a history of ingenious ideas and missed opportunities,, Control & Cybernetics, 38 (2009), 973.   Google Scholar

[23]

M. Plail, "Die Entwicklung der optimalen Steuerungen,", Vandenhoeck & Ruprecht, (1998).   Google Scholar

[24]

H. J. Sussmann J. C. and Willems:, 300 years of optimal control: from the brachystrochrone to the maximum principle,, IEEE Control Systems Magazine, 17 (1997), 32.  doi: 10.1109/37.588098.  Google Scholar

[25]

F. O. O. Wagener, On the Leitmann equivalent problem approach,, Journal of Optimization Theory and Applications, 142 (2009), 229.  doi: 10.1007/s10957-009-9513-8.  Google Scholar

show all references

References:
[1]

R. E. Bellman, The theory of dynamic programming,, Bull. Amer. Math. Soc., 60 (1954), 503.  doi: 10.1090/S0002-9904-1954-09848-8.  Google Scholar

[2]

R. E. Bellman, "Eye of a Hurricane, an Autobiography,", World Scientific Publishing Co Pte Ltd., (1984).   Google Scholar

[3]

H. Boerner, Carathéodorys Eingang zur Variationsrechnung,, Jahresbericht der Deutschen Mathematiker Vereinigung, 56 (1953), 31.   Google Scholar

[4]

V. G. Boltyanski, R. V. Gamkrelidze and L. S. Pontryagin, On the theory of optimal processes (in Russian),, Doklady Akademii Nauk SSSR, 110 (1956), 7.   Google Scholar

[5]

M. H. Breitner, The genesis of differential games in light of Isaacs' contributions,, J. of Optimization Theory and Applications, 124 (2005), 523.  doi: 10.1007/s10957-004-1173-0.  Google Scholar

[6]

C. Carathéodory, Die Methode der geodätischen Äquidistanten und das Problem von Lagrange,, Acta Mathematica, 47 (1926), 199.   Google Scholar

[7]

C. Carathéodory, "Variationsrechnung und Partielle Differentialgleichungen Erster Ordnung,", Teubner, (1935).   Google Scholar

[8]

C. Carathéodory, The beginning of research in the calculus of variations,, Osiris, 3 (1937), 224.   Google Scholar

[9]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order, Part 1, Part 2,", Holden-Day, (2001), 1965.   Google Scholar

[10]

C. Carathéodory, "Variationsrechnung und partielle Differentialgleichungen erster Ordnung,", With Contributions of H. Boerner and E. Hölder (edited, ().   Google Scholar

[11]

D. Carlson, An observation on two methods of obtaining solutions to Variational problems,, Journal of Optimization Theory and Applications, 114 (2002), 345.  doi: 10.1023/A:1016035718160.  Google Scholar

[12]

D. Carlson and G. Leitmann, Fields of extremals and sufficient conditions for the simplest problem of the calculus of variations,, Journal of Global Optimization, 40 (2008), 41.  doi: 10.1007/s10898-007-9171-z.  Google Scholar

[13]

D. Carlson and G. Leitmann, Fields of extremals and sufficient conditions for the simplest problem of the calculus of variations in $n$ variables,, in:, 33 (2009), 75.   Google Scholar

[14]

D. Carlson and G. Leitmann, An equivalent problem approach to absolute extrema for calculus of variations problems with differential constraints,, Dynamics of Continuous, 18 (2011), 1.   Google Scholar

[15]

M. R. Hestenes, "A General Problem in the Calculus of Variations with Applications to the Paths of Least Time,", Research Memorandum No. 100, (1123).   Google Scholar

[16]

R. P. Isaacs, "Games of Pursuit,", Paper No. P-257, (1951).   Google Scholar

[17]

R. P. Isaacs, Some fundamentals of differential games,, in, (1973), 25.   Google Scholar

[18]

G. Leitmann, A note on absolute extrema of certain integrals,, International Journal of Nonlinear Mechanics, 2 (1967), 55.  doi: 10.1016/0020-7462(67)90018-2.  Google Scholar

[19]

G. Leitmann, On a class of direct optimization problems,, Journal of Optimization Theory and Appplications, 108 (2001), 467.  doi: 10.1023/A:1017507006157.  Google Scholar

[20]

S. MacLane, The Applied Mathematics Group at Columbia in World War II,, in, (1988), 495.   Google Scholar

[21]

H. J. Pesch and R. Bulirsch, The maximum principle, Bellman's equation and Carathéodory's work,, J. of Optimization Theory and Applications, 80 (1994), 203.  doi: 10.1007/BF02192933.  Google Scholar

[22]

H. J. Pesch and M. Plail, The maximum principle of optimal control: a history of ingenious ideas and missed opportunities,, Control & Cybernetics, 38 (2009), 973.   Google Scholar

[23]

M. Plail, "Die Entwicklung der optimalen Steuerungen,", Vandenhoeck & Ruprecht, (1998).   Google Scholar

[24]

H. J. Sussmann J. C. and Willems:, 300 years of optimal control: from the brachystrochrone to the maximum principle,, IEEE Control Systems Magazine, 17 (1997), 32.  doi: 10.1109/37.588098.  Google Scholar

[25]

F. O. O. Wagener, On the Leitmann equivalent problem approach,, Journal of Optimization Theory and Applications, 142 (2009), 229.  doi: 10.1007/s10957-009-9513-8.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[3]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[4]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[5]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[8]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[12]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[13]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[14]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[16]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[17]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[18]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[19]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[20]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

 Impact Factor: 

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]