Citation: |
[1] |
M. Diaby, Linear programming formulation of the set partitioning problem, Int. J. Operational Research, 8 (2010), 399-427. |
[2] |
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," W. H. Freeman, New York, 1979. |
[3] |
N. Karmarkar and R. M. Karp, The differencing method of set partitioning, Technical Report UCB/CSD 82/113, Computer Science Division, University of California, Berkeley, (1982). |
[4] |
J. Kojić, Integer linear programming model for multidimensional two-way number partitioning problem, Computer and Mathematics with Applications, 60 (2010), 2302-2308.doi: 10.1016/j.camwa.2010.08.024. |
[5] |
R. E. Korf, Multi-way number partitioning, in "Proceedings of Proceedings of the International Joint Conference on Artificial Intelligence," Pasadena, California, USA, (2009), 538-543. |
[6] |
R. E. Korf, Objective functions for multi-way number partitioning, in "Proceedings of the Third Annual Symposium on Combinatorial Search," Atlanta, Georgia, USA, 2010, Available from: http://www.aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2098. |
[7] |
R. E. Korf, A complete anytime algorithm for number partitioning, Artificial Intelligence, 106 (1998), 181-203.doi: 10.1016/S0004-3702(98)00086-1. |
[8] |
R. E. Korf, From approximate to optimal solutions: A case study of number partitioning, in "Proceedings of Proceedings of the International Joint Conference on Artificial Intelligence," Montreal, Canada, (1995), 266-272. |
[9] |
M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of second-order cone programming, Linear Algebra and its Applications, 284 (1998), 193-228.doi: 10.1016/S0024-3795(98)10032-0. |