2013, 3(2): 223-234. doi: 10.3934/naco.2013.3.223

Subspace trust-region algorithm with conic model for unconstrained optimization

1. 

Jinling College of Nanjing University, Nanjing 210089, China

2. 

Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received  December 2011 Revised  January 2013 Published  April 2013

In this paper, a new subspace algorithm is proposed for unconstrained optimization. In this new algorithm, the subspace technique is used in the trust region subproblem with conic model, and the dogleg method is modified to solve this subproblem. The global convergence of this algorithm under some reasonable conditions is established. Numerical experiment shows that this algorithm may be superior to the corresponding algorithm without using subspace technique especially for large scale problems.
Citation: Xin Zhang, Jie Wen, Qin Ni. Subspace trust-region algorithm with conic model for unconstrained optimization. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 223-234. doi: 10.3934/naco.2013.3.223
References:
[1]

W. C. Davidon, Conic approximation and collinear scaling for optimizers,, SIAM J.Number. Anal., 17 (1980), 268.  doi: 10.1137/0717023.  Google Scholar

[2]

S. Di and W. Y. Sun, A trust region Method for conic model to solve unconstrained optimization,, Optimization Methods and Software, 6 (1996), 237.  doi: 10.1080/10556789608805637.  Google Scholar

[3]

S. D. Jiang, "A Quasi-Newton Trust Region Method with a New Conic Model for the Unconstrained Optimization,", S. M thesis, (2005).   Google Scholar

[4]

X. P. Lu, Q. Ni and H. Liu, A dogleg method for solving new trust region subproblems of conic model,, Acta Math. Appl. Sin (in Chinese), 30 (2007), 855.   Google Scholar

[5]

X. P. Lu and Q. Ni, A quasi-Newton trust region method with a new conic model for the unconstrained optimization,, Applied Mathematics and Computation, 204 (2008), 373.  doi: 10.1016/j.amc.2008.06.062.  Google Scholar

[6]

J. J. More, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software,, ACM Trans. Math. Software, 7 (1981), 17.  doi: 10.1145/355934.355936.  Google Scholar

[7]

Q. Ni, Optimality conditions for trust-region subproblems involving a conic model,, SIAM J. Optimization, 15 (2005), 826.  doi: 10.1137/S1052623402418991.  Google Scholar

[8]

M. J. D. Powell, A new algorithm for unconstrained optimization,, in, (1970), 31.   Google Scholar

[9]

M. J. D. Powell, A hybrid method for nonlinear equations,, in, (1970), 87.   Google Scholar

[10]

M. J. D. Powell, Convergence properties of a class of minimization algorithms,, in, (1974), 1.   Google Scholar

[11]

M. J. D. Powell and Y. X. Yuan, A trust region algorithm for equality constrained optimization,, Math. Program., 49 (1991), 189.  doi: 10.1007/BF01588787.  Google Scholar

[12]

Y. X. Yuan, A review of trust region algorithms for optimization,, in, (2000), 271.   Google Scholar

[13]

H. W. Zhou and Y. X. Yuan, A subspace implementation of quasi-newton trust region methods for unconstrained optimization,, Report, (2004).   Google Scholar

[14]

M. F. Zhu, Y. Xue and F. S. Zhang, A quasi-Newton type trust region method based on the conic model,, Numer. Math. (A Journal of Chinese Universities), 17 (1995), 36.   Google Scholar

show all references

References:
[1]

W. C. Davidon, Conic approximation and collinear scaling for optimizers,, SIAM J.Number. Anal., 17 (1980), 268.  doi: 10.1137/0717023.  Google Scholar

[2]

S. Di and W. Y. Sun, A trust region Method for conic model to solve unconstrained optimization,, Optimization Methods and Software, 6 (1996), 237.  doi: 10.1080/10556789608805637.  Google Scholar

[3]

S. D. Jiang, "A Quasi-Newton Trust Region Method with a New Conic Model for the Unconstrained Optimization,", S. M thesis, (2005).   Google Scholar

[4]

X. P. Lu, Q. Ni and H. Liu, A dogleg method for solving new trust region subproblems of conic model,, Acta Math. Appl. Sin (in Chinese), 30 (2007), 855.   Google Scholar

[5]

X. P. Lu and Q. Ni, A quasi-Newton trust region method with a new conic model for the unconstrained optimization,, Applied Mathematics and Computation, 204 (2008), 373.  doi: 10.1016/j.amc.2008.06.062.  Google Scholar

[6]

J. J. More, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software,, ACM Trans. Math. Software, 7 (1981), 17.  doi: 10.1145/355934.355936.  Google Scholar

[7]

Q. Ni, Optimality conditions for trust-region subproblems involving a conic model,, SIAM J. Optimization, 15 (2005), 826.  doi: 10.1137/S1052623402418991.  Google Scholar

[8]

M. J. D. Powell, A new algorithm for unconstrained optimization,, in, (1970), 31.   Google Scholar

[9]

M. J. D. Powell, A hybrid method for nonlinear equations,, in, (1970), 87.   Google Scholar

[10]

M. J. D. Powell, Convergence properties of a class of minimization algorithms,, in, (1974), 1.   Google Scholar

[11]

M. J. D. Powell and Y. X. Yuan, A trust region algorithm for equality constrained optimization,, Math. Program., 49 (1991), 189.  doi: 10.1007/BF01588787.  Google Scholar

[12]

Y. X. Yuan, A review of trust region algorithms for optimization,, in, (2000), 271.   Google Scholar

[13]

H. W. Zhou and Y. X. Yuan, A subspace implementation of quasi-newton trust region methods for unconstrained optimization,, Report, (2004).   Google Scholar

[14]

M. F. Zhu, Y. Xue and F. S. Zhang, A quasi-Newton type trust region method based on the conic model,, Numer. Math. (A Journal of Chinese Universities), 17 (1995), 36.   Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[3]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[6]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[9]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[10]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[14]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[15]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[16]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[17]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[20]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

 Impact Factor: 

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]