-
Previous Article
A unified maximum entropy method via spline functions for Frobenius-Perron operators
- NACO Home
- This Issue
-
Next Article
Partial eigenvalue assignment with time delay robustness
Subspace trust-region algorithm with conic model for unconstrained optimization
1. | Jinling College of Nanjing University, Nanjing 210089, China |
2. | Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
References:
[1] |
W. C. Davidon, Conic approximation and collinear scaling for optimizers, SIAM J.Number. Anal., 17 (1980), 268-281.
doi: 10.1137/0717023. |
[2] |
S. Di and W. Y. Sun, A trust region Method for conic model to solve unconstrained optimization, Optimization Methods and Software, 6 (1996), 237-263.
doi: 10.1080/10556789608805637. |
[3] |
S. D. Jiang, "A Quasi-Newton Trust Region Method with a New Conic Model for the Unconstrained Optimization," S. M thesis, Nanjing University of Aeronautics and Astronautics in Nanjing (in Chinese), 2005. |
[4] |
X. P. Lu, Q. Ni and H. Liu, A dogleg method for solving new trust region subproblems of conic model, Acta Math. Appl. Sin (in Chinese), 30 (2007), 855-871. |
[5] |
X. P. Lu and Q. Ni, A quasi-Newton trust region method with a new conic model for the unconstrained optimization, Applied Mathematics and Computation, 204 (2008), 373-384.
doi: 10.1016/j.amc.2008.06.062. |
[6] |
J. J. More, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software, 7 (1981), 17-41.
doi: 10.1145/355934.355936. |
[7] |
Q. Ni, Optimality conditions for trust-region subproblems involving a conic model, SIAM J. Optimization, 15 (2005), 826-837.
doi: 10.1137/S1052623402418991. |
[8] |
M. J. D. Powell, A new algorithm for unconstrained optimization, in "Nonlinear Programming" (eds. J. B. Rosen, O. L. Mangasarian and K. Ritter), Academic Press, New York, (1970), 31-66. |
[9] |
M. J. D. Powell, A hybrid method for nonlinear equations, in "Numerical Methods for Nonlinear Algebraic Equations " (eds. P. Robinowitz), Gordon and Breach Science, London, (1970), 87-144. |
[10] |
M. J. D. Powell, Convergence properties of a class of minimization algorithms, in "Nonlinear Programming 2" (eds. O. L. Mangasarian, R. R. Meyer and S. M. Robinson), Academic Press, New York, (1974), 1-27. |
[11] |
M. J. D. Powell and Y. X. Yuan, A trust region algorithm for equality constrained optimization, Math. Program., 49 (1991), 189-211.
doi: 10.1007/BF01588787. |
[12] |
Y. X. Yuan, A review of trust region algorithms for optimization, in "ICIAM99: Proceedings of the Fourth International Congress on Industrial and Applied Mathematics" (eds. J. M. Ball and J. C. R. Hunt), Oxford University Press, Oxford UK, (2000), 271-282. |
[13] |
H. W. Zhou and Y. X. Yuan, A subspace implementation of quasi-newton trust region methods for unconstrained optimization, Report, ICMSEC, AMSS, Chinese Academy of Science, 2004. |
[14] |
M. F. Zhu, Y. Xue and F. S. Zhang, A quasi-Newton type trust region method based on the conic model, Numer. Math. (A Journal of Chinese Universities), 17 (1995), 36-47. |
show all references
References:
[1] |
W. C. Davidon, Conic approximation and collinear scaling for optimizers, SIAM J.Number. Anal., 17 (1980), 268-281.
doi: 10.1137/0717023. |
[2] |
S. Di and W. Y. Sun, A trust region Method for conic model to solve unconstrained optimization, Optimization Methods and Software, 6 (1996), 237-263.
doi: 10.1080/10556789608805637. |
[3] |
S. D. Jiang, "A Quasi-Newton Trust Region Method with a New Conic Model for the Unconstrained Optimization," S. M thesis, Nanjing University of Aeronautics and Astronautics in Nanjing (in Chinese), 2005. |
[4] |
X. P. Lu, Q. Ni and H. Liu, A dogleg method for solving new trust region subproblems of conic model, Acta Math. Appl. Sin (in Chinese), 30 (2007), 855-871. |
[5] |
X. P. Lu and Q. Ni, A quasi-Newton trust region method with a new conic model for the unconstrained optimization, Applied Mathematics and Computation, 204 (2008), 373-384.
doi: 10.1016/j.amc.2008.06.062. |
[6] |
J. J. More, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software, 7 (1981), 17-41.
doi: 10.1145/355934.355936. |
[7] |
Q. Ni, Optimality conditions for trust-region subproblems involving a conic model, SIAM J. Optimization, 15 (2005), 826-837.
doi: 10.1137/S1052623402418991. |
[8] |
M. J. D. Powell, A new algorithm for unconstrained optimization, in "Nonlinear Programming" (eds. J. B. Rosen, O. L. Mangasarian and K. Ritter), Academic Press, New York, (1970), 31-66. |
[9] |
M. J. D. Powell, A hybrid method for nonlinear equations, in "Numerical Methods for Nonlinear Algebraic Equations " (eds. P. Robinowitz), Gordon and Breach Science, London, (1970), 87-144. |
[10] |
M. J. D. Powell, Convergence properties of a class of minimization algorithms, in "Nonlinear Programming 2" (eds. O. L. Mangasarian, R. R. Meyer and S. M. Robinson), Academic Press, New York, (1974), 1-27. |
[11] |
M. J. D. Powell and Y. X. Yuan, A trust region algorithm for equality constrained optimization, Math. Program., 49 (1991), 189-211.
doi: 10.1007/BF01588787. |
[12] |
Y. X. Yuan, A review of trust region algorithms for optimization, in "ICIAM99: Proceedings of the Fourth International Congress on Industrial and Applied Mathematics" (eds. J. M. Ball and J. C. R. Hunt), Oxford University Press, Oxford UK, (2000), 271-282. |
[13] |
H. W. Zhou and Y. X. Yuan, A subspace implementation of quasi-newton trust region methods for unconstrained optimization, Report, ICMSEC, AMSS, Chinese Academy of Science, 2004. |
[14] |
M. F. Zhu, Y. Xue and F. S. Zhang, A quasi-Newton type trust region method based on the conic model, Numer. Math. (A Journal of Chinese Universities), 17 (1995), 36-47. |
[1] |
Lijuan Zhao, Wenyu Sun. Nonmonotone retrospective conic trust region method for unconstrained optimization. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 309-325. doi: 10.3934/naco.2013.3.309 |
[2] |
Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial and Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919 |
[3] |
Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial and Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171 |
[4] |
Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237 |
[5] |
Jirui Ma, Jinyan Fan. On convergence properties of the modified trust region method under Hölderian error bound condition. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021222 |
[6] |
Liang Zhang, Wenyu Sun, Raimundo J. B. de Sampaio, Jinyun Yuan. A wedge trust region method with self-correcting geometry for derivative-free optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 169-184. doi: 10.3934/naco.2015.5.169 |
[7] |
Jun Takaki, Nobuo Yamashita. A derivative-free trust-region algorithm for unconstrained optimization with controlled error. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 117-145. doi: 10.3934/naco.2011.1.117 |
[8] |
Dan Xue, Wenyu Sun, Hongjin He. A structured trust region method for nonconvex programming with separable structure. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 283-293. doi: 10.3934/naco.2013.3.283 |
[9] |
Guanghui Zhou, Qin Ni, Meilan Zeng. A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 595-608. doi: 10.3934/jimo.2016034 |
[10] |
Chunlin Hao, Xinwei Liu. A trust-region filter-SQP method for mathematical programs with linear complementarity constraints. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1041-1055. doi: 10.3934/jimo.2011.7.1041 |
[11] |
Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104 |
[12] |
Bülent Karasözen. Survey of trust-region derivative free optimization methods. Journal of Industrial and Management Optimization, 2007, 3 (2) : 321-334. doi: 10.3934/jimo.2007.3.321 |
[13] |
He Huang, Zhen He. A global optimization method for multiple response optimization problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022016 |
[14] |
Hong Seng Sim, Chuei Yee Chen, Wah June Leong, Jiao Li. Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021143 |
[15] |
Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial and Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103 |
[16] |
Weijun Zhou, Youhua Zhou. On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization. Journal of Industrial and Management Optimization, 2013, 9 (4) : 893-899. doi: 10.3934/jimo.2013.9.893 |
[17] |
Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013 |
[18] |
Liyan Qi, Xiantao Xiao, Liwei Zhang. On the global convergence of a parameter-adjusting Levenberg-Marquardt method. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 25-36. doi: 10.3934/naco.2015.5.25 |
[19] |
Gonglin Yuan, Zhan Wang, Pengyuan Li. Global convergence of a modified Broyden family method for nonconvex functions. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021164 |
[20] |
Jing Zhou, Dejun Chen, Zhenbo Wang, Wenxun Xing. A conic approximation method for the 0-1 quadratic knapsack problem. Journal of Industrial and Management Optimization, 2013, 9 (3) : 531-547. doi: 10.3934/jimo.2013.9.531 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]