Citation: |
[1] |
C. Beck and Schlögl, "Thermodynamics of Chaotic Systems, an Introduction," Cambridge University Press, 1993. |
[2] |
P. Biswas, H. Shimoyama and L. Mead, Lyaponov exponent and natural invariant density determination of chaostic maps: An iterative maximum entropy ansatz, J. Phys., A 43 (2010), 125103.doi: 10.1088/1751-8113/43/12/125103. |
[3] |
C. Bose and R. Murray, The exact rate of approximation in Ulam's method, Disc. Cont. Dynam. Sys., 7 (2001), 219-235. |
[4] |
A. Boyarsky and P. Góra, "Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension," Birkhäuser, 1997. |
[5] |
C. de Boor, "A Practical Guide to Splines," Revised edition, Springer, 2001. |
[6] |
J. M. Borwein and A. S. Lewis, On the convergence of moment problems, Trans. Amer. Math. Soc., 325 (1991), 249-271.doi: 10.1090/S0002-9947-1991-1008695-8. |
[7] |
J. M. Borwein and A. S. Lewis, Convergence of the best entropy estimates, SIAM J. Optimi., 1 (1991), 191-205.doi: 10.1137/0801014. |
[8] |
J. Ding, A maximum entropy method for solving Frobenius-Perron operator equations, Appl. Math. Comput., 93 (1998), 155-168.doi: 10.1016/S0096-3003(97)10061-3. |
[9] |
J. Ding, Q. Du and T.-Y. Li, High order approximation of the Frobenius-Perron operator, Appl. Math. Comput., 53 (1993), 151-171.doi: 10.1016/0096-3003(93)90099-Z. |
[10] |
J. Ding, C. Jin, N. Rhee and A. Zhou, A maximum entropy method based on piecewise linear functions for the recovery of a stationary density of interval mappings, J. Stat. Phys., 145 (2011), 1620-1639.doi: 10.1007/s10955-011-0366-9. |
[11] |
J. Ding and T.-Y. Li, Markov approximations of Frobenius-Perron operator, Nonlinear Anal. TMA, 17 (1991), 759-772.doi: 10.1016/0362-546X(91)90211-I. |
[12] |
J. Ding and T.-Y. Li, Projection solutions of Frobenius-Perron operator equations, Inter. J. Math. Math. Sci., 16 (1993), 465-484.doi: 10.1155/S0161171293000584. |
[13] |
J. Ding and L. Mead, Maximum entropy approximation for Lyaponov exponents of chaotic maps, J. Math. Phys., 43 (2002), 2518-2522.doi: 10.1063/1.1465100. |
[14] |
J. Ding and N. Rhee, A modified piecewise linear Markov approximation of Markov operators, Applied Math. Comput., 174 (2006), 236-251. |
[15] |
J. Ding and N. Rhee, A maximum entropy method based on orthogonal polynomials for Frobenius-Perron operators, Adv. Applied Math. Mech., 3 (2011), 204-218. |
[16] |
J. Ding and N. Rhee, Birkhoff's ergodic theorem and the piecewise constant maximum entropy method for Frobenius-Perron operators, Inter. J. Computer Math., 89 (2012), 1083-1091.doi: 10.1080/00207160.2012.680446. |
[17] |
J. Ding and N. Rhee, On the norm convergence of a piecewise linear least squares method for Frobenius-Perron operators, J. Math. Anal. Appl., 386 (2012), 91-102.doi: 10.1016/j.jmaa.2011.07.053. |
[18] |
J. Ding and A. Zhou, "Statistical Properties of Deterministic Systems," Springer, 2009. |
[19] |
G. Froyland, Ulam's method for random interval maps, Nonlinearity, 12 (1999), 1029-1052.doi: 10.1088/0951-7715/12/4/318. |
[20] |
M. Keane, R. Murrary and L.-S. Young, Computing invariant measures for expanding circle maps, Nonlinearity, 11 (1998), 27-46.doi: 10.1088/0951-7715/11/1/004. |
[21] |
A. Lasota and M. Mackey, "Chaos, Fractals, and Noises," 2nd Edition, Springer-Verlag, New York, 1994. |
[22] |
T.-Y. Li, Finite approximation for the Frobenius-Perron operator, a solution to Ulam's conjecture, J. Approx. Theory, 17 (1976), 177-186.doi: 10.1016/0021-9045(76)90037-X. |
[23] |
C. Liverani, Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study, Nonlinearity, 14 (2001), 463-490.doi: 10.1088/0951-7715/14/3/303. |
[24] |
L. R. Mead and N. Papanicolaou, Maximum entropy in the problem of moments, J. Math. Phys., 25 (1984), 2404-2417. |
[25] |
S. Ulam, "A Collection of Mathematical Problems," Interscience, 1960. |