Citation: |
[1] |
V. I. Arnold, "Mathematical Methods of Classical Mechanics," 2nd edition, Springer-Verlag, Berlin, Heidelberg, 1989.doi: 10.1007/978-1-4757-2063-1. |
[2] |
C. A. Desoer and B. H. Whalen, A note on pseudoinverses, Journal of the Society for Industrial and Applied Mathematics, 11 (1963), 442-447.doi: 10.1137/0111031. |
[3] |
D. Y. Gao, "Duality Principles in Nonconvex Systems. Theory Methods and Applications," Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.doi: 10.1007/978-1-4757-3176-7. |
[4] |
D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization problems, Optim., 52 (2003), 467-493.doi: 10.1080/02331930310001611501. |
[5] |
D. Y. Gao, Nonconvex semi-linear problems and canonical duality solutions, Advances in Mechanics and Mathematics (eds. D. Y. Gao and R. W. Ogden), Kluwer, (2003), 261-311. |
[6] |
D. Y. Gao, Solutions and optimality to box constrained nonconvex minimization problems, J. Ind. Manag. Optim., 3 (2007), 293-304.doi: 10.3934/jimo.2007.3.293. |
[7] |
D. Y. Gao, Canonical duality theory: theory, method, and applications in global optimization, Comput. Chem., 33 (2009), 1964-1972.doi: 10.1016/j.compchemeng.2009.06.009. |
[8] |
D. Y. Gao and R. W. Ogden, Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation, Quart. J. Mech. Appl. Math., 61 (2008), 497-522.doi: 10.1093/qjmam/hbn014. |
[9] |
D. Y. Gao and N. Ruan, Solutions to quadratic minimization problems with box and integer constraints, J. Glob. Optim., 47 (2010), 463-484.doi: 10.1007/s10898-009-9469-0. |
[10] |
D. Y. Gao and G. Strang, Geometric nonlinearity: Potential energy, complementary energy, and the gap function, Quart. Appl. Math., 47 (1989), 487-504. |
[11] |
D. Y. Gao and C. Z. Wu, On the triality theory in global optimization, J. Industrial and Manegement Optimization, 8 (2012), 229-242. Also published in arXiv:1104.2970v1 at http://arxiv.org/abs/1104.2970. |
[12] |
D. Y. Gao and C. Z. Wu, Triality theory for general unconstrained global optimization problems, To appear in J. Global Optimization. |
[13] | |
[14] |
D. M. Morales-Silva and D. Y. Gao, Canonical duality theory and triality for solving general nonconstrained global optimization problems, To be submitted. |
[15] |
G. Peters and J. H. Wilkinson, The least squares problem and pseudo-inverses, The Computer Journal, 13 (1970), 309-316.doi: 10.1093/comjnl/13.3.309. |
[16] |
N. Ruan, D. Y. Gao and Y. Jiao, Canonical dual least square method for solving general nonlinear systems of quadratic equations, Comput Optim Appl, 47 (2010), 335-347.doi: 10.1007/s10589-008-9222-5. |
[17] |
M. J. Sewell, "Maximum and Minimum Principles," Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1987. |
[18] |
Z. B. Wang, S. C. Fang, D. Y. Gao and W. X. Xing, Canonical dual approach to solving the maximum cut problem, J. Global Optimization, 54 (2012), 341-352.doi: 10.1007/s10898-012-9881-8. |
[19] |
C. Wu, C. J. Li and D. Y. Gao, Canonical primal-dual method for solving non-convex minimization problems, arXiv:1212.6492, http://arxiv.org/pdf/1212.6492v1.pdf. |
[20] |
R. K. P. Zia, E. F. Redish and S. R. McKay, Making sense of the Legendre transform, American Journal of Physics, 77 (2009), 614-622.doi: 10.1119/1.3119512. |