Citation: |
[1] |
D. P. Bertsekas and J. N. Tsitsiklis, "Parallel and Distributed Computation: Numerical Methods," Prentice Hall, Englewood Cliffs, NJ, 1989. |
[2] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends of Machine Learning, 3 (2011), 1-122.doi: 10.1561/2200000016. |
[3] |
J. T. Betts, An accelerated multiplier method for nonlinear programming, Journal of Optimization Theory and Applications, 21 (1977), 137-174.doi: 10.1007/BF00932517. |
[4] |
J. V. Burke and J. J. Moré, On the identification of active constraints, SIAM Journal on Numerical Analysis, 25 (1988), 1197-1211.doi: 10.1137/0725068. |
[5] |
R. H. Byrd, R. B. Schnabel and G. A. Schultz, A trust region algorithm for nonlinearly constrained optimization, SIAM Journal on Numerical Analysis, 24 (1987), 1152-1170.doi: 10.1137/0724076. |
[6] |
A. R. Conn, N. I. M. Gould, A. Sartenaer and P. L. Toint, Global convergence of a class of trust region algorithms for optimization using inexact projections on convex constraints, SIAM Journal on Optimization, 3 (1993), 164-221.doi: 10.1137/0803009. |
[7] |
A. R. Conn, N. I. M. Gould, A. Sartenaer and P. L. Toint, Convergence properties of minimization algorithms for convex constraints using a structured trust region, SIAM Journal on Optimization, 6 (1996), 1059-1086.doi: 10.1137/S1052623492236481. |
[8] |
A. R. Conn, N. I. M. Gould and P. L. Toint, "LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A)," Number 17 in Springer Series in Computational Mathematics, Springer-Verlag, New York, 1992. |
[9] |
A. R. Conn, N. I. M. Gould and P. L. Toint, "Trust Region Methods," MPS-SIAM, Philadelphia, 2000. |
[10] |
J. Eckstein, "Splitting Methods for Monotone Operators with Applications to Parallel Optimization," Ph.D. Thesis, Massachusetts Institute of Technology, Department of Civil Engineering, Technical Report LIDS-TH-1877, MIT, 1989. |
[11] |
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.doi: 10.1007/BF01581204. |
[12] |
M. Elalem, A global convergence theory for the Celis-Dennis-Tapia trust-region algorithm for constrained optimization, SIAM Journal on Numerical Analysis, 28 (1991), 266-290.doi: 10.1137/0728015. |
[13] |
R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint and A. Wächter, Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming, SIAM Journal on Optimization, 13 (2002), 635-659.doi: 10.1137/S1052623499357258. |
[14] |
M. Fortin and R. Glowinski, "Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems," North-Holland, Amsterdam, 1983. |
[15] |
M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Computational Optimization and Applications, 1 (1992), 93-111.doi: 10.1007/BF00247655. |
[16] |
A. Griewank and P. L. Toint, On the unconstrained optimization of partially separable functions, in "Nonlinear Optimization" (eds. M.J.D. Powell), Academic Press, London, (1982), 301-312. |
[17] |
P. C. Hansen, J. G. Nagy and D. P. O'Leary, "Deblurring Images: Matrices, Spectra, and Filtering," SIAM, Philadelphia, 2006. |
[18] |
P. T. Harker and J. S. Pang, Finite dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Mathematical Programming, 48 (1990), 161-220. |
[19] |
B. S. He, L. Z. Liao, D. R. Han and H. Yang, A new inexact alternating direction method for monotone variational inequalities, Mathematical Programming, 92 (2002), 103-118.doi: 10.1007/s101070100280. |
[20] |
H. Y. Huang and A. K. Aggerwal, A class of quadratically convergent algorithms for constrained function minimization, Journal of Optimization Theory and Applications, 16 (1975), 447-485.doi: 10.1007/BF00933853. |
[21] |
S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating directions method for convex optimization, Mathematical Programming, 83 (1998), 29-53.doi: 10.1007/BF02680549. |
[22] |
A. Miele, H. Y. Huang and J. C. Heideman, Sequential gradient-restoration algorithm for the minimization of constrained functions, ordinary and conjugate gradient versions, Journal of Optimization Theory and Applications, 4 (1969), 213-243.doi: 10.1007/BF00927947. |
[23] |
J. J. Moré, Trust regions and projected gradients, in "System Modelling and Optimization," Lecture Notes in Control nd Information Sciences, Berlin, (1988), 1-13. |
[24] |
B. A. Murthagh and R. W. Sargent, A constrained minimization method with quadratic convergence, in " Optimization" (eds. R. Fletcher), Academic Press, London, (1970), 215-245. |
[25] |
J. Nocedal, "Theory of Algorithms for Unconstrained Optimization," Cambridge: Cambridge University Press, 1992. |
[26] |
M. J. D. Powell and Y. Yuan, A trust region algorithm for equality constrained optimization, Mathematical Programming, 49 (1990), 189-211.doi: 10.1007/BF01588787. |
[27] |
A. Sartenaer, Automatic determination of an initial trust region in nonlinear programming, SIAM Journal on Scientific Computing, 18 (1997), 1788-1803.doi: 10.1137/S1064827595286955. |
[28] |
W. Sun and Y. Yuan, "Optimization Theory and Methods: Nonlinear Programming," Springer, New York, 2006. |
[29] |
J. Takaki and N. Yamashita, A derivative-free trust region algorithm for unconstrained optimization with controlled error, Numerical Algebra, Control and Optimization, 1 (2011), 117-145.doi: 10.3934/naco.2011.1.117. |
[30] |
P. L. Toint, On large scale nonlinear least squares calculations, SIAM Journal on Scientific and Statistical Computing, 8 (1987), 416-435.doi: 10.1137/0908042. |
[31] |
P. L. Toint, Global convergence of a class of trust region methods for nonconvex minimization in Hilbert space, IMA Journal of Numerical Analysis, 8 (1988), 231-252.doi: 10.1093/imanum/8.2.231. |
[32] |
A. Vardi, A trust region algorithm for equality constrained minimization: Convergence properties and implementation, SIAM Journal on Numerical Analysis, 22 (1985), 575-591.doi: 10.1137/0722035. |