Citation: |
[1] |
F. Bastin, V. Malmedy, M. Mouffe, Ph. L. Toint and D. Tomanos, A retrospective trust region method for unconstrained optimization, Mathematical Programming, 123 (2010), 395-418.doi: 10.1007/s10107-008-0258-1. |
[2] |
J. F. Bonnans, E. R. Panier, A. L. Tits and J. L. Zhou, Avoiding the maratos effect by means of a nonmonotone line search II. inequalities constrained problems - feasibility iterates, SIAM Journal on Numerical Analysis, 29 (1992), 1187-1202.doi: 10.1137/0729072. |
[3] |
J. P. Bulteau and J. P. Vial, Curvilinear path and trust region in unconstrained optimization: a convergence analysis, Mathematical Programming Study, 30 (1987), 82-101.doi: 10.1007/BFb0121156. |
[4] |
A. R. Conn, N. I. M. Gould and Ph. L. Toint, "Trust Region Methods," SIAM, Philadelphia, USA, 2000.doi: 10.1137/1.9780898719857. |
[5] |
J. Chen, W. Y. Sun and Z. H. Yang, A nonmonotone retrospective trust region method for unconstrained optimization, Journal of Industrial and Management Optimization, (2013), to appear. |
[6] |
Y. H. Dai, On the nonmonotone line search, Journal of Optimization Theory and Applications, 112 (2002), 315-330.doi: 10.1023/A:1013653923062. |
[7] |
W. Davidon, Conic Approximations and Collinear Scalings for Optimizers, SIAM Journal on Numerical Analysis, 17 (1980), 268-281.doi: 10.1137/0717023. |
[8] |
N. Y. Deng, Y. Xiao and F. J. Zhou, Nonmonotonic trust region algorithm, Journal of Optimization Theory and Applications, 76 (1993), 259-285.doi: 10.1007/BF00939608. |
[9] |
S. Di and W. Y. Sun, A trust region method for conic model to solve unconstraind optimizations, Optimization Methods and Software, 6 (1996), 237-263.doi: 10.1080/10556789608805637. |
[10] |
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.doi: 10.1007/s101070100263. |
[11] |
M. C. Ferris, S. Lucidi and M. Roma, Nonmonotone curvilinear line search methods for unconstrained optimization, Computational Optimization and Applications, 6 (1996), 117-136.doi: 10.1007/BF00249642. |
[12] |
J. H. Fu and W. Y. Sun, Nonmonotone adaptive trust-region method for unconstrained optimization problems, Applied Mathematics and Computation, 163 (2005), 489-504.doi: 10.1016/j.amc.2004.02.011. |
[13] |
L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM Journal on Numerical Analysis, 23 (1986), 707-716.doi: 10.1137/0723046. |
[14] |
L. Grippo, F. Lampariello and S. Lucidi, A truncated Newton method with nonmonotone line search for unconstrained optimization, Journal of Optimization Theory and Applications, 60 (1989), 401-419.doi: 10.1007/BF00940345. |
[15] |
C. L. Hao and X. W. Liu, Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints, Numerical Algebra, Control and Optimization, 2 (2012), 19-29.doi: 10.3934/naco.2012.2.19. |
[16] |
Y. Ji, Y. J. Li, K. C. Zhang and X. L. Zhang, A new nonmonotone trust-region method of conic model for solving unconstrained optimization, Journal of Computational and Applied Mathematics, 233 (2010), 1746-1754.doi: 10.1016/j.cam.2009.09.011. |
[17] |
Y. Lu and Z. W. Chen, A retrospective filter trust region algorithm for unconstrained optimization, Applied Mathematics, 1 (2010), 179-188.doi: 10.4236/am.2010.13022. |
[18] |
X. P. Lu and Q. Ni, A dogleg method for solving new trust region subproblems of conic model, Acta Mathematicae Applicatae Sinica, 30 (1997), 1-17. |
[19] |
X. J. Miao and Z. H. Liu, An adaptive retrospective trust region method for unconstrained optimization, IEEE Conference, (2010), 957-960. |
[20] |
J. J. Moré, Recent development in algorithms and software for trust region methods, Mathematical Programming: the State of the Art, Springer, Berlin, (1983), 258-287. |
[21] |
J. J. Moré, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Transactions on Mathematical Software, 7 (1981), 17-41.doi: 10.1145/355934.355936. |
[22] |
Q. Ni, Optimality conditions for trust region subproblems involving a conic model, SIAM Journal on Optimization, 15 (2005), 828-837.doi: 10.1137/S1052623402418991. |
[23] |
M. J. D. Powell, On the global convergence of trust region algorithms for unconstrained minimization, Mathematical Programming, 29 (1984), 297-303.doi: 10.1007/BF02591998. |
[24] |
S. J. Qu and S. D. Jiang, A trust region method with a conic model for unconstrained optimization, Mathematical Methods In The Applied Sciences, 31 (2008), 1780-1808.doi: 10.1002/mma.997. |
[25] |
M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problems, SIAM Jounal on Optimization, 7 (1997), 26-33.doi: 10.1137/S1052623494266365. |
[26] |
S. B. Sheng, Interpolation by conic model for unconstrained optimization, Computing, 54 (1995), 83-98.doi: 10.1007/BF02238081. |
[27] |
G. A. Shultz, R. B. Schnabel and R. H. Byrid, A family of trust region based algorithms for unconstrained minimization with strong global convergence properties, SIAM Journal on Numerical Analysis, 22 (1985), 47-67.doi: 10.1137/0722003. |
[28] |
D. C. Sorensen, The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization, SIAM Jounal on Numerical Analysis, 17 (1980), 84-114.doi: 10.1137/0717011. |
[29] |
T. Steihaug, The conjugate gradient method and trust region in large scale optimization, SIAM Journal on Numerical Analysis, 20 (1983), 626-637.doi: 10.1137/0720042. |
[30] |
W. Y. Sun, Nonmonotone trust region method for optimization, Applied Mathematics and Computation, 156 (2004), 159-174.doi: 10.1016/j.amc.2003.07.008. |
[31] |
W. Y. Sun, R. J. B. Sampaio and J. Y. Yuan, Quasi-Newton trust region algorithm for non-smooth least squares problems, Applied Mathematics and Computation, 105 (1999), 183-194.doi: 10.1016/S0096-3003(98)10103-0. |
[32] |
W. Y. Sun and Y. X. Yuan, "Optimization Theory and Methods: Nonlinear Programming," Springer, New York, 2006. |
[33] |
H. P. Wu and Q. Ni, A new trust region algorithm with conic model, Numerical Mathematics, A Journal of Chinese Universities, 30 (2008), 57-63. |
[34] |
H. Yamashita, A globally convergent primal dual interior point method for constrained optimization, Optimization Methods and Software, 10 (1998), 443-469.doi: 10.1080/10556789808805723. |
[35] |
Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares, Numerical Algebra, Control and Optimization, 1 (2011), 15-34.doi: 10.3934/naco.2011.1.15. |
[36] |
H. C. Zhang and W. W. Hager, A nonmontone line search technique and its application to unconstrained optimization, SIAM Journal on Optimization, 14 (2004), 1043-1056.doi: 10.1137/S1052623403428208. |