2013, 3(1): 31-48. doi: 10.3934/naco.2013.3.31

Safe and reliable coverage control

1. 

Coordinated Science Laboratory, Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States

2. 

Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California, United States

3. 

Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, California, United States

Received  December 2011 Revised  November 2012 Published  January 2013

In this paper we consider a problem of designing control laws for multiple mobile agents trying to accomplish three objectives. One of the objectives is to sense a given compact domain while satisfying the other objective which is to avoid collisions between the agents themselves as well as with the obstacles. To keep the communication links between the agents reliable, the agents need to stay relatively close during the sensing operation which is the third and final objective. The design of control laws is based on carefully constructed objective functions and on an assumption that the agents' dynamic models are nonlinear yet affine in control laws. As an illustration of some performance characteristics of the proposed control laws, a numerical example is provided.
Citation: Dušan M. Stipanović, Christopher Valicka, Claire J. Tomlin, Thomas R. Bewley. Safe and reliable coverage control. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 31-48. doi: 10.3934/naco.2013.3.31
References:
[1]

A. Bacciotti and L. Rosier, "Liapunov Functions and Stability in Control Theory,", 2ndedition, (2005).   Google Scholar

[2]

J. V. Breakwell and P. Hagedorn, Point capture of two evaders in succession,, Journal of Optimization Theory and Applications, 27 (1979), 89.  doi: 10.1007/BF00933327.  Google Scholar

[3]

C. R. Burns, R. F. Wang and D. M. Stipanović, A study of human and receding horizon controller perfomance of a remote navigation task with obstacles and feedback delays,, Journal of Behavioral Robotics, 2 (2011), 44.   Google Scholar

[4]

F. L. Chernousko, Controlled search of a moving object,, Prikladnia Matematika i Mekhanika (in Russian), 44 (1981), 3.   Google Scholar

[5]

N. Chopra, D. M. Stipanovićand M. W. Spong, On synchronization and collision avoidance for mechanical systems,, Proceedings of the 2008 American Control Conference, (2008), 3713.  doi: 10.1109/ACC.2008.4587071.  Google Scholar

[6]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", Mc-Graw Hill, (1955).   Google Scholar

[7]

M. Corless, G. Leitmann, and J. M. Skowronski, Adaptive control for avoidance or evasion in an uncertain environment,, Computers & Mathematics with Applications, 13 (1987), 1.  doi: 10.1016/0898-1221(87)90090-3.  Google Scholar

[8]

M. Corless and G. Leitmann, Adaptive controllers for avoidance or evasion in an uncertain environment: some examples,, Computers & Mathematics with Applications, 18 (1989), 161.  doi: 10.1016/0898-1221(89)90133-8.  Google Scholar

[9]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides,", Kluwer Academic Publishers, (1988).   Google Scholar

[10]

V. V. Filippov, "Basic Topological Structures of Ordinary Differential Equations,", Kluwer Academic Publishers, (1998).   Google Scholar

[11]

H. Flanders, Differentiation under the integral sign,, The American Mathematical Monthly, 80 (1973), 615.  doi: 10.2307/2319163.  Google Scholar

[12]

R. A. Freeman and P. V. Kokotović, "Robust Nonlinear Control Design: State Space and Lyapunov Techniques,", Birkhäuser, (1996).   Google Scholar

[13]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993).   Google Scholar

[14]

P. F. Hokayem, D. M. Stipanović and M. W. Spong, Semiautonomous control of multiple networked Langrangian systems,, International Journal of Robust and Nonlinear Control, 19 (2009), 2040.  doi: 10.1002/rnc.1391.  Google Scholar

[15]

I. I. Hussein and D. M. Stipanović, Effective coverage control for mobile sensor networks with guaranteed collision avoidance,, IEEE Transactions on Control Systems Technology, 15 (2007), 642.  doi: 10.1109/TCST.2007.899155.  Google Scholar

[16]

I. I. Hussein and D. M. Stipanović, Effective coverage control using dynamic sensor networks with flocking and guaranteed collision avoidance,, Proceedings of the 2007 American Control Conference, (2007), 3420.  doi: 10.1109/ACC.2007.4282310.  Google Scholar

[17]

R. Isaacs, "Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization,", John Wiley and Sons, (1965).   Google Scholar

[18]

A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis,", Dover Publications, (1975).   Google Scholar

[19]

V. Lakshmikantham and S. Leela, "Differential and Integral Inequalities: Theory and Applications,", Mathematics in Science and Engineering, (1969).   Google Scholar

[20]

V. Lakshmikantham, S. Leela and A. A. Martinyuk, "Stability Analysis of Nonlinear Systems,", Marcel Dekker, (1989).   Google Scholar

[21]

I. B. Lazarević, "Multidimensional Mathematical Analysis,", Orion-Art, (2005).   Google Scholar

[22]

G. Leitmann and J. Skowronski, Avoidance control,, Journal of Optimization Theory and Applications, 23 (1977), 581.  doi: 10.1007/BF00933298.  Google Scholar

[23]

G. Leitmann, Guaranteed avoidance strategies,, Journal of Optimization Theory and Applications, 32 (1980), 569.  doi: 10.1007/BF00934040.  Google Scholar

[24]

G. Leitmann, Guaranteed avoidance feedback control,, IEEE Transactions on Automatic Control, 25 (1980), 850.  doi: 10.1109/TAC.1980.1102408.  Google Scholar

[25]

G. Leitmann and J. Skowronski, A note on avoidance control,, Optimal Control Applications & Methods, 4 (1983), 335.  doi: 10.1002/oca.4660040406.  Google Scholar

[26]

S. Mastellone, D. M. Stipanović, C. R. Graunke, K. A. Intlekofer and M. W. Spong, Formation control and collision avoidance for multi-agent nonholonomic systems: theory and experiments,, International Journal of Robotics Research, 13 (2008), 107.  doi: 10.1177/0278364907084441.  Google Scholar

[27]

A. A. Melikyan, The problem of time-optimal control with the search for a target point,, Prikladnia Matematika i Mekhanika (In Russian), 54 (1990), 1.   Google Scholar

[28]

K. M. Miettinen, "Nonlinear Multiobjective Optimization,", Kluwer Academic Publishers, (1998).  doi: 10.1007/978-1-4615-5563-6.  Google Scholar

[29]

I. Mitchell, A. M. Bayen and C. J. Tomlin, A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games,, IEEE Transactions on Automatic Control, 50 (2005), 947.  doi: 10.1109/TAC.2005.851439.  Google Scholar

[30]

L. A. Petrosjan, "Differential Games of Pursuit,", Series on Optimization, (1993).  doi: 10.1142/1670.  Google Scholar

[31]

E. J. Rodríguez-Seda, J. J. Troy, C. A. Erignac, P. Murray, D. M. Stipanović and M. W. Spong, Bilateral teleoperation of multiple mobile agents: Formation control and collision avoidance,, IEEE Transactions on Control Systems Technology, 18 (2010), 984.  doi: 10.1109/TCST.2009.2030176.  Google Scholar

[32]

E. J. Rodríguez-Seda, D. M. Stipanović and M. W. Spong, Collision avoidance control with sensing uncertainties,, Proceedings of the 2011 American Control Conference, (2011).   Google Scholar

[33]

M. Saska, J. S. Mejía, D. M. Stipanović and K. Schilling, Control and navigation of formations of car-like robots on a receding horizon,, Proceedings of the 2009 IEEE Multi-conference on Systems and Control. St Petersburg, (2009).   Google Scholar

[34]

R. Siegwart and I. R. Nourbakhsh, "Introduction to Autonomous Mobile Robots,", The MIT Press, (2004).   Google Scholar

[35]

D. M. Stipanović, Sriram and C. J. Tomlin, Strategies for agents in multi-player pursuit-evasion games,, Proceedings of the Eleventh International Symposium on Dynamic Games and Applications, (2004).   Google Scholar

[36]

D. M. Stipanović, P. F. Hokayem, M. W. Spong and D. D. Šiljak, Cooperative avoidance control for multi-agent systems,, Journal of Dynamic Systems, 129 (2007), 699.  doi: 10.1115/1.2764510.  Google Scholar

[37]

D. M. Stipanović, A. Melikyan and N. Hovakimyan, Some sufficient conditions for multi-player pursuit-evasion games with continuous and discrete observations,, Annals of Dynamic Games, 10 (2009), 133.   Google Scholar

[38]

D. M. Stipanović, A survey and some new results in avoidance control,, in, (2009), 166.   Google Scholar

[39]

D. M. Stipanović, A. Melikyan and N. Hovakimyan, Guaranteed strategies for nonlinear multi-player pursuit-evasion games,, International Game Theory Review, 12 (2010), 1.  doi: 10.1142/S0219198910002489.  Google Scholar

[40]

D. M. Stipanović, C. J. Tomlin and G. Leitmann, Monotone approximations of minimum and maximum functions and multi-objective problems,, Applied Mathematics & Optimization, 66 (2012), 455.   Google Scholar

[41]

D. M. Stipanović, C. J. Tomlin and G. Leitmann, A note on monotone approximations of minimum and maximum functions and multi-objective problems,, Numerical Algebra, 1 (2011), 487.   Google Scholar

[42]

D. M. Stipanović, C. J. Tomlin and C. Valicka, Collision free coverage control with multiple agents,, Proceedings of the RoMoCo'11 Conference, (2011).   Google Scholar

[43]

E. M. Vaisbord and V. I. Zhukovskiy, "Introduction to Multi-Player Differential Games and Their Applications,", Gordon and Breach, (1988).   Google Scholar

[44]

C. G. Valicka, S. R. Bieniawski, J. Vian, and D. M. Stipanović, Cooperative avoidance control for UAVs,, Proceedings of the Tenth International Conference on Control, (2008), 1462.   Google Scholar

[45]

T. L. Vincent and W. J. Grantham, "Nonlinear and Optimal Control Systems,", John Wiley & Sons, (1997).   Google Scholar

[46]

M. M. Zavlanos and G. J. Pappas, Potential fields for maintaining connectivity of mobile networks,, IEEE Transactions on Robotics, 23 (2007), 812.  doi: 10.1109/TRO.2007.900642.  Google Scholar

[47]

V. A. Zorich, "Mathematical Analysis II,", Springer-Verlag, (2004).   Google Scholar

show all references

References:
[1]

A. Bacciotti and L. Rosier, "Liapunov Functions and Stability in Control Theory,", 2ndedition, (2005).   Google Scholar

[2]

J. V. Breakwell and P. Hagedorn, Point capture of two evaders in succession,, Journal of Optimization Theory and Applications, 27 (1979), 89.  doi: 10.1007/BF00933327.  Google Scholar

[3]

C. R. Burns, R. F. Wang and D. M. Stipanović, A study of human and receding horizon controller perfomance of a remote navigation task with obstacles and feedback delays,, Journal of Behavioral Robotics, 2 (2011), 44.   Google Scholar

[4]

F. L. Chernousko, Controlled search of a moving object,, Prikladnia Matematika i Mekhanika (in Russian), 44 (1981), 3.   Google Scholar

[5]

N. Chopra, D. M. Stipanovićand M. W. Spong, On synchronization and collision avoidance for mechanical systems,, Proceedings of the 2008 American Control Conference, (2008), 3713.  doi: 10.1109/ACC.2008.4587071.  Google Scholar

[6]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", Mc-Graw Hill, (1955).   Google Scholar

[7]

M. Corless, G. Leitmann, and J. M. Skowronski, Adaptive control for avoidance or evasion in an uncertain environment,, Computers & Mathematics with Applications, 13 (1987), 1.  doi: 10.1016/0898-1221(87)90090-3.  Google Scholar

[8]

M. Corless and G. Leitmann, Adaptive controllers for avoidance or evasion in an uncertain environment: some examples,, Computers & Mathematics with Applications, 18 (1989), 161.  doi: 10.1016/0898-1221(89)90133-8.  Google Scholar

[9]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides,", Kluwer Academic Publishers, (1988).   Google Scholar

[10]

V. V. Filippov, "Basic Topological Structures of Ordinary Differential Equations,", Kluwer Academic Publishers, (1998).   Google Scholar

[11]

H. Flanders, Differentiation under the integral sign,, The American Mathematical Monthly, 80 (1973), 615.  doi: 10.2307/2319163.  Google Scholar

[12]

R. A. Freeman and P. V. Kokotović, "Robust Nonlinear Control Design: State Space and Lyapunov Techniques,", Birkhäuser, (1996).   Google Scholar

[13]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993).   Google Scholar

[14]

P. F. Hokayem, D. M. Stipanović and M. W. Spong, Semiautonomous control of multiple networked Langrangian systems,, International Journal of Robust and Nonlinear Control, 19 (2009), 2040.  doi: 10.1002/rnc.1391.  Google Scholar

[15]

I. I. Hussein and D. M. Stipanović, Effective coverage control for mobile sensor networks with guaranteed collision avoidance,, IEEE Transactions on Control Systems Technology, 15 (2007), 642.  doi: 10.1109/TCST.2007.899155.  Google Scholar

[16]

I. I. Hussein and D. M. Stipanović, Effective coverage control using dynamic sensor networks with flocking and guaranteed collision avoidance,, Proceedings of the 2007 American Control Conference, (2007), 3420.  doi: 10.1109/ACC.2007.4282310.  Google Scholar

[17]

R. Isaacs, "Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization,", John Wiley and Sons, (1965).   Google Scholar

[18]

A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis,", Dover Publications, (1975).   Google Scholar

[19]

V. Lakshmikantham and S. Leela, "Differential and Integral Inequalities: Theory and Applications,", Mathematics in Science and Engineering, (1969).   Google Scholar

[20]

V. Lakshmikantham, S. Leela and A. A. Martinyuk, "Stability Analysis of Nonlinear Systems,", Marcel Dekker, (1989).   Google Scholar

[21]

I. B. Lazarević, "Multidimensional Mathematical Analysis,", Orion-Art, (2005).   Google Scholar

[22]

G. Leitmann and J. Skowronski, Avoidance control,, Journal of Optimization Theory and Applications, 23 (1977), 581.  doi: 10.1007/BF00933298.  Google Scholar

[23]

G. Leitmann, Guaranteed avoidance strategies,, Journal of Optimization Theory and Applications, 32 (1980), 569.  doi: 10.1007/BF00934040.  Google Scholar

[24]

G. Leitmann, Guaranteed avoidance feedback control,, IEEE Transactions on Automatic Control, 25 (1980), 850.  doi: 10.1109/TAC.1980.1102408.  Google Scholar

[25]

G. Leitmann and J. Skowronski, A note on avoidance control,, Optimal Control Applications & Methods, 4 (1983), 335.  doi: 10.1002/oca.4660040406.  Google Scholar

[26]

S. Mastellone, D. M. Stipanović, C. R. Graunke, K. A. Intlekofer and M. W. Spong, Formation control and collision avoidance for multi-agent nonholonomic systems: theory and experiments,, International Journal of Robotics Research, 13 (2008), 107.  doi: 10.1177/0278364907084441.  Google Scholar

[27]

A. A. Melikyan, The problem of time-optimal control with the search for a target point,, Prikladnia Matematika i Mekhanika (In Russian), 54 (1990), 1.   Google Scholar

[28]

K. M. Miettinen, "Nonlinear Multiobjective Optimization,", Kluwer Academic Publishers, (1998).  doi: 10.1007/978-1-4615-5563-6.  Google Scholar

[29]

I. Mitchell, A. M. Bayen and C. J. Tomlin, A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games,, IEEE Transactions on Automatic Control, 50 (2005), 947.  doi: 10.1109/TAC.2005.851439.  Google Scholar

[30]

L. A. Petrosjan, "Differential Games of Pursuit,", Series on Optimization, (1993).  doi: 10.1142/1670.  Google Scholar

[31]

E. J. Rodríguez-Seda, J. J. Troy, C. A. Erignac, P. Murray, D. M. Stipanović and M. W. Spong, Bilateral teleoperation of multiple mobile agents: Formation control and collision avoidance,, IEEE Transactions on Control Systems Technology, 18 (2010), 984.  doi: 10.1109/TCST.2009.2030176.  Google Scholar

[32]

E. J. Rodríguez-Seda, D. M. Stipanović and M. W. Spong, Collision avoidance control with sensing uncertainties,, Proceedings of the 2011 American Control Conference, (2011).   Google Scholar

[33]

M. Saska, J. S. Mejía, D. M. Stipanović and K. Schilling, Control and navigation of formations of car-like robots on a receding horizon,, Proceedings of the 2009 IEEE Multi-conference on Systems and Control. St Petersburg, (2009).   Google Scholar

[34]

R. Siegwart and I. R. Nourbakhsh, "Introduction to Autonomous Mobile Robots,", The MIT Press, (2004).   Google Scholar

[35]

D. M. Stipanović, Sriram and C. J. Tomlin, Strategies for agents in multi-player pursuit-evasion games,, Proceedings of the Eleventh International Symposium on Dynamic Games and Applications, (2004).   Google Scholar

[36]

D. M. Stipanović, P. F. Hokayem, M. W. Spong and D. D. Šiljak, Cooperative avoidance control for multi-agent systems,, Journal of Dynamic Systems, 129 (2007), 699.  doi: 10.1115/1.2764510.  Google Scholar

[37]

D. M. Stipanović, A. Melikyan and N. Hovakimyan, Some sufficient conditions for multi-player pursuit-evasion games with continuous and discrete observations,, Annals of Dynamic Games, 10 (2009), 133.   Google Scholar

[38]

D. M. Stipanović, A survey and some new results in avoidance control,, in, (2009), 166.   Google Scholar

[39]

D. M. Stipanović, A. Melikyan and N. Hovakimyan, Guaranteed strategies for nonlinear multi-player pursuit-evasion games,, International Game Theory Review, 12 (2010), 1.  doi: 10.1142/S0219198910002489.  Google Scholar

[40]

D. M. Stipanović, C. J. Tomlin and G. Leitmann, Monotone approximations of minimum and maximum functions and multi-objective problems,, Applied Mathematics & Optimization, 66 (2012), 455.   Google Scholar

[41]

D. M. Stipanović, C. J. Tomlin and G. Leitmann, A note on monotone approximations of minimum and maximum functions and multi-objective problems,, Numerical Algebra, 1 (2011), 487.   Google Scholar

[42]

D. M. Stipanović, C. J. Tomlin and C. Valicka, Collision free coverage control with multiple agents,, Proceedings of the RoMoCo'11 Conference, (2011).   Google Scholar

[43]

E. M. Vaisbord and V. I. Zhukovskiy, "Introduction to Multi-Player Differential Games and Their Applications,", Gordon and Breach, (1988).   Google Scholar

[44]

C. G. Valicka, S. R. Bieniawski, J. Vian, and D. M. Stipanović, Cooperative avoidance control for UAVs,, Proceedings of the Tenth International Conference on Control, (2008), 1462.   Google Scholar

[45]

T. L. Vincent and W. J. Grantham, "Nonlinear and Optimal Control Systems,", John Wiley & Sons, (1997).   Google Scholar

[46]

M. M. Zavlanos and G. J. Pappas, Potential fields for maintaining connectivity of mobile networks,, IEEE Transactions on Robotics, 23 (2007), 812.  doi: 10.1109/TRO.2007.900642.  Google Scholar

[47]

V. A. Zorich, "Mathematical Analysis II,", Springer-Verlag, (2004).   Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[6]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[7]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[8]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[9]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[10]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[11]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[16]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[17]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[18]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

 Impact Factor: 

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (15)

[Back to Top]