Citation: |
[1] |
J. M. Alam, N. K.-R. Kevlahan and O. V. Vasilyev, Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations, Journal of Computational Physics, 214 (2006), 829-857.doi: 10.1016/j.jcp.2005.10.009. |
[2] |
E. Bacry, S. Mallat and G. Papanicolaou, A wavelet based space-time adaptive numerical method for partial differential equation, Mathematical Modelling and Numerical Analysis, 26 (1992), 793-834. |
[3] |
A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet schemes for elliptic problems-implementation and numerical experiments, SIAM Journal on Scientific Computing, 23 (2001), 910-939.doi: 10.1137/S1064827599365501. |
[4] |
A. Bindal, J. G. Khinast and M. G. Ierapetritou, Adaptive multiscale solution of dynamical systems in chemical processes using wavelets, Computers and Chemical Engineering, 27 (2003), 131-142.doi: 10.1016/S0098-1354(02)00165-5. |
[5] |
C. Canuto, A. Tabacco and K. Urban, The wavelet element method - Part I. Construction and analysis, Applied and Computational Harmonic Analysis, 6 (1999), 1-52.doi: 10.1006/acha.1997.0242. |
[6] |
J. M. Cascón, L. Ferragut and M. I. Asensio, Space-time adaptive algorithm for the mixed parabolic problem, Numerische Mathematik, 103 (2006), 367-392.doi: 10.1007/s00211-006-0677-y. |
[7] |
Z. M. Chen and J. Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Mathematics of Computation, 73 (2004), 1167-1193.doi: 10.1090/S0025-5718-04-01634-5. |
[8] |
A. Cohen, "Numerical Analysis of Wavelet Methods," Elsevier, 2003. |
[9] |
A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates, Mathematics of Computation, 70 (2001), 27-75.doi: 10.1090/S0025-5718-00-01252-7. |
[10] |
A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods II - Beyond the elliptic case, Foundations of Computational Mathematics, 2 (2002), 203-245.doi: 10.1007/s102080010027. |
[11] |
A. Cohen, I. Daubechies and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 45 (1992), 485-560.doi: 10.1002/cpa.3160450502. |
[12] |
A. Cohen, I. Daubechies and P. Vial, Wavelets on the interval and fast wavelet transforms, Applied and Computational Harmonic Analysis, 1 (1993), 54-81.doi: 10.1006/acha.1993.1005. |
[13] |
A. Cohen and R. Masson, Wavelet methods for second-order elliptic problems, preconditioning, and adaptivity, SIAM Journal on Scientific Computing, 21 (1999), 1006-1026.doi: 10.1137/S1064827597330613. |
[14] |
S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems, Applied Numerical Mathematics, 23 (1997), 21-47.doi: 10.1016/S0168-9274(96)00060-8. |
[15] |
W. Dahmen and A. Kunoth, Adaptive wavelet methods for linear-quadratic elliptic control problems: convergence rates, SIAM Journal on Control and Optimization, 43 (2005), 1640-1675.doi: 10.1137/S0363012902419199. |
[16] |
W. Dahmen, A. Kunoth and K. Urban, Biorthogonal spline wavelets on the interval - Stability and moment conditions, Applied and Computational Harmonic Analysis, 6 (1999), 132-196.doi: 10.1006/acha.1998.0247. |
[17] |
W. Dahmen, S. Prossdorf and R. Schneider, Wavelet approximation methods for pseudo-differential eqautions II: Matrix compression and fast resolution, Advances in Computational Mathematics, 1 (1993), 259-335.doi: 10.1007/BF02072014. |
[18] |
I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41 (1988), 909-996.doi: 10.1002/cpa.3160410705. |
[19] |
I. Daubechies, "Ten Lectures on Wavelets," SIAM Philadelphia, 1992.doi: 10.1137/1.9781611970104. |
[20] |
J. Liandrat and P. Tchamitchian, Resolution of the 1d regularized Burgers equation using a spatial wavelet approximation, Tech. Rep., NASA Contractor Report 187480, ICASE Report 90-83, NASA Langley Research Center, Hampton VA 23665-5225 (1990). |
[21] |
D. Liang, Q. Guo and S. Gong, A New Splitting Wavelet Method for Solving the General Aerosol Dynamics Equation, Journal of Aerosol Science, 39 (2008), 467-487.doi: 10.1016/j.jaerosci.2008.01.005. |
[22] |
P. Morin, R. H. Nochetto and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM Journal on Numerical Analysis, 38 (2000), 466-488.doi: 10.1137/S0036142999360044. |
[23] |
O. Roussel, K. Schneider, A. Tsigulin and H. Bockhorn, A conservative fully adaptive multiresolution algorithm for parabolic PDEs, Journal of Computational Physics, 188 (2003), 493-523. |