2013, 3(2): 347-352. doi: 10.3934/naco.2013.3.347

Solutions of the Yang-Baxter matrix equation for an idempotent

1. 

Department of Mathematics, The Univeristy of Southern Mississippi, Hattiesburg, MS 39406-5045, United States

2. 

Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406-5045

3. 

Department of Mathematics, The Univeristy of New Haven, West Haven, CT 06516, United States

4. 

Department of mathematics and Statistics, The University of Missouri - Kansas City, Kansas City, MO 64110-2499, United States

Received  March 2012 Revised  March 2013 Published  April 2013

Let $A$ be a square matrix which is an idempotent. We find all solutions of the matrix equation of $AXA=XAX$ by using the diagonalization technique for $A$.
Citation: A. Cibotarica, Jiu Ding, J. Kolibal, Noah H. Rhee. Solutions of the Yang-Baxter matrix equation for an idempotent. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 347-352. doi: 10.3934/naco.2013.3.347
References:
[1]

R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II eqivalence to a generalized ice-type lattice model,, Ann Phys., 76 (1973), 25.  doi: 10.1016/0003-4916(73)90440-5.  Google Scholar

[2]

A. Cibotarica, "An Examination of the Yang-Baxter Equation,'', Master thesis, (2011).   Google Scholar

[3]

J. Ding and N. Rhee, A nontrivial solution to a stochastic matrix equation,, East Asia J. Applied Math., 2 (2012), 277.   Google Scholar

[4]

F. Felix, "Nonlinear Equations, Quantum Groups and Duality Theorems: A Primer on the Yang-Baxter Equation,", VDM Verlag, (2009).   Google Scholar

[5]

M. Jimbo, "Introduction to the Yang-Baxter equation,'', Braid Group, (1994), 153.   Google Scholar

[6]

C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta function interaction,, Phys. Rev. Lett., 19 (1967), 1312.  doi: 10.1103/PhysRevLett.19.1312.  Google Scholar

[7]

C. N. Yang and M. L. Ge, "Braid Group, Knot Theory and Statistical Physics II,'', World Scientific, (1994).   Google Scholar

show all references

References:
[1]

R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II eqivalence to a generalized ice-type lattice model,, Ann Phys., 76 (1973), 25.  doi: 10.1016/0003-4916(73)90440-5.  Google Scholar

[2]

A. Cibotarica, "An Examination of the Yang-Baxter Equation,'', Master thesis, (2011).   Google Scholar

[3]

J. Ding and N. Rhee, A nontrivial solution to a stochastic matrix equation,, East Asia J. Applied Math., 2 (2012), 277.   Google Scholar

[4]

F. Felix, "Nonlinear Equations, Quantum Groups and Duality Theorems: A Primer on the Yang-Baxter Equation,", VDM Verlag, (2009).   Google Scholar

[5]

M. Jimbo, "Introduction to the Yang-Baxter equation,'', Braid Group, (1994), 153.   Google Scholar

[6]

C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta function interaction,, Phys. Rev. Lett., 19 (1967), 1312.  doi: 10.1103/PhysRevLett.19.1312.  Google Scholar

[7]

C. N. Yang and M. L. Ge, "Braid Group, Knot Theory and Statistical Physics II,'', World Scientific, (1994).   Google Scholar

[1]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[4]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[5]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[6]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[9]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (5)

[Back to Top]