2013, 3(2): 347-352. doi: 10.3934/naco.2013.3.347

Solutions of the Yang-Baxter matrix equation for an idempotent

1. 

Department of Mathematics, The Univeristy of Southern Mississippi, Hattiesburg, MS 39406-5045, United States

2. 

Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406-5045

3. 

Department of Mathematics, The Univeristy of New Haven, West Haven, CT 06516, United States

4. 

Department of mathematics and Statistics, The University of Missouri - Kansas City, Kansas City, MO 64110-2499, United States

Received  March 2012 Revised  March 2013 Published  April 2013

Let $A$ be a square matrix which is an idempotent. We find all solutions of the matrix equation of $AXA=XAX$ by using the diagonalization technique for $A$.
Citation: A. Cibotarica, Jiu Ding, J. Kolibal, Noah H. Rhee. Solutions of the Yang-Baxter matrix equation for an idempotent. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 347-352. doi: 10.3934/naco.2013.3.347
References:
[1]

R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II eqivalence to a generalized ice-type lattice model,, Ann Phys., 76 (1973), 25. doi: 10.1016/0003-4916(73)90440-5.

[2]

A. Cibotarica, "An Examination of the Yang-Baxter Equation,'', Master thesis, (2011).

[3]

J. Ding and N. Rhee, A nontrivial solution to a stochastic matrix equation,, East Asia J. Applied Math., 2 (2012), 277.

[4]

F. Felix, "Nonlinear Equations, Quantum Groups and Duality Theorems: A Primer on the Yang-Baxter Equation,", VDM Verlag, (2009).

[5]

M. Jimbo, "Introduction to the Yang-Baxter equation,'', Braid Group, (1994), 153.

[6]

C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta function interaction,, Phys. Rev. Lett., 19 (1967), 1312. doi: 10.1103/PhysRevLett.19.1312.

[7]

C. N. Yang and M. L. Ge, "Braid Group, Knot Theory and Statistical Physics II,'', World Scientific, (1994).

show all references

References:
[1]

R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II eqivalence to a generalized ice-type lattice model,, Ann Phys., 76 (1973), 25. doi: 10.1016/0003-4916(73)90440-5.

[2]

A. Cibotarica, "An Examination of the Yang-Baxter Equation,'', Master thesis, (2011).

[3]

J. Ding and N. Rhee, A nontrivial solution to a stochastic matrix equation,, East Asia J. Applied Math., 2 (2012), 277.

[4]

F. Felix, "Nonlinear Equations, Quantum Groups and Duality Theorems: A Primer on the Yang-Baxter Equation,", VDM Verlag, (2009).

[5]

M. Jimbo, "Introduction to the Yang-Baxter equation,'', Braid Group, (1994), 153.

[6]

C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta function interaction,, Phys. Rev. Lett., 19 (1967), 1312. doi: 10.1103/PhysRevLett.19.1312.

[7]

C. N. Yang and M. L. Ge, "Braid Group, Knot Theory and Statistical Physics II,'', World Scientific, (1994).

[1]

Sigve Hovda. Closed-form expression for the inverse of a class of tridiagonal matrices. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 437-445. doi: 10.3934/naco.2016019

[2]

Eric Bedford, Kyounghee Kim. Degree growth of matrix inversion: Birational maps of symmetric, cyclic matrices. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 977-1013. doi: 10.3934/dcds.2008.21.977

[3]

Zenonas Navickas, Rasa Smidtaite, Alfonsas Vainoras, Minvydas Ragulskis. The logistic map of matrices. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 927-944. doi: 10.3934/dcdsb.2011.16.927

[4]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

[5]

Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835

[6]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[7]

Delio Mugnolo. Dynamical systems associated with adjacency matrices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1945-1973. doi: 10.3934/dcdsb.2018190

[8]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[9]

Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002

[10]

Ferenc Szöllősi. On quaternary complex Hadamard matrices of small orders. Advances in Mathematics of Communications, 2011, 5 (2) : 309-315. doi: 10.3934/amc.2011.5.309

[11]

Barbara A. Shipman. Compactified isospectral sets of complex tridiagonal Hessenberg matrices. Conference Publications, 2003, 2003 (Special) : 788-797. doi: 10.3934/proc.2003.2003.788

[12]

David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039

[13]

B. Cantó, C. Coll, E. Sánchez. The problem of global identifiability for systems with tridiagonal matrices. Conference Publications, 2011, 2011 (Special) : 250-257. doi: 10.3934/proc.2011.2011.250

[14]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[15]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems & Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

[16]

Shengtian Yang, Thomas Honold. Good random matrices over finite fields. Advances in Mathematics of Communications, 2012, 6 (2) : 203-227. doi: 10.3934/amc.2012.6.203

[17]

Steve Limburg, David Grant, Mahesh K. Varanasi. Higher genus universally decodable matrices (UDMG). Advances in Mathematics of Communications, 2014, 8 (3) : 257-270. doi: 10.3934/amc.2014.8.257

[18]

De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699

[19]

Riccardo Aragona, Alessio Meneghetti. Type-preserving matrices and security of block ciphers. Advances in Mathematics of Communications, 2019, 13 (2) : 235-251. doi: 10.3934/amc.2019016

[20]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

[Back to Top]