\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solutions of the Yang-Baxter matrix equation for an idempotent

Abstract / Introduction Related Papers Cited by
  • Let $A$ be a square matrix which is an idempotent. We find all solutions of the matrix equation of $AXA=XAX$ by using the diagonalization technique for $A$.
    Mathematics Subject Classification: Primary: 15A18, 15A24; Secondary: 15A27.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II eqivalence to a generalized ice-type lattice model, Ann Phys., 76 (1973), 25-47.doi: 10.1016/0003-4916(73)90440-5.

    [2]

    A. Cibotarica, "An Examination of the Yang-Baxter Equation,'' Master thesis, University of Southern Mississippi in Hattiesberg, 2011.

    [3]

    J. Ding and N. Rhee, A nontrivial solution to a stochastic matrix equation, East Asia J. Applied Math., 2 (2012), 277-284.

    [4]

    F. Felix, "Nonlinear Equations, Quantum Groups and Duality Theorems: A Primer on the Yang-Baxter Equation," VDM Verlag, 2009.

    [5]

    M. Jimbo, "Introduction to the Yang-Baxter equation,'' Braid Group, Knot Theory and Statistical Physics II, World Scientific, (1994), 153-176.

    [6]

    C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta function interaction, Phys. Rev. Lett., 19 (1967), 1312-1315.doi: 10.1103/PhysRevLett.19.1312.

    [7]

    C. N. Yang and M. L. Ge, "Braid Group, Knot Theory and Statistical Physics II,'' World Scientific, 1994.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(264) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return