\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems

Abstract Related Papers Cited by
  • The aim of this paper is to obtain, in a Hilbert space $H$, the weak and strong convergence of a penalty proximal algorithm and a splitting one for a bilevel equilibrium problem: find $ x\in S_F $ such that $\ G(x,y)\geq 0\ $ for all $ \ y\in S_F$, where $S_F :=\lbrace y\in K\; :\; F(y,u)\geq 0\;\; \forall u\in K \rbrace$, and $F,G:K\times K\longrightarrow \mathbb{R}$ are two bifunctions with $K$ a nonempty closed convex subset of $H$. In our framework, results of convergence generalize those recently obtained by Attouch et al. (SIAM Journal on Optimization 21, 149-173 (2011)). We show in particular that for the strong convergence of the penalty algorithm, the geometrical condition they impose is not required. We also give applications of the iterative schemes to fixed point problems and variational inequalities.
    Mathematics Subject Classification: Primary: 46N10, 65K15, 90C33; Secondary: 47H05, 65K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Attouch, M. O. Czarnecki and J. Peypouquet, Prox-penalization and splitting methods for constrained variational problems, SIAM J. Control Optim., 21 (2011), 149-173.doi: 10.1137/100789464.

    [2]

    J. P. Aubin, "Optima and Equilibria: An Introduction to Nonlinear Analysis," Springer, 2nd edition, 2002.

    [3]

    E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.

    [4]

    O. Chadli, Z. Chbani and H. Riahi, Equilibrium problems with generalized monotone Bifunctions and Applications to Variational inequalities, J. Optim. Theory Appl., 105 (2000), 299-323.doi: 10.1023/A:1004657817758.

    [5]

    Z. Chbani and H. Riahi, Variational principle for monotone and maximal bifunctions, Serdica Math. J., 29 (2003), 159-166.

    [6]

    N. Hadjisavvas and H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization, 59 (2010), 147-160.doi: 10.1080/02331930801951116.

    [7]

    P. E. Mainge and A. Moudafi, Strong convergence of an iterative method for hierarchical fixed-points problems, Pacific J. Optim., 3 (2007), 529-538.

    [8]

    A. Moudafi, Proximal point algorithm extended for equilibrium problems, J. Nat. Geom., 15 (1999), 91-100.

    [9]

    A. Moudafi, On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces, J. Math Anal. Appl., 359 (2009), 508-513.doi: 10.1016/j.jmaa.2009.06.005.

    [10]

    A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems, J. Global Optimization, 47 (2010), 287-292.doi: 10.1007/s10898-009-9476-1.

    [11]

    Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Aust. Math. Soc., 73 (1967), 591-597.doi: 10.1090/S0002-9904-1967-11761-0.

    [12]

    G. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383-390.doi: 10.1016/0022-247X(79)90234-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return