-
Previous Article
Index-range monotonicity and index-proper splittings of matrices
- NACO Home
- This Issue
-
Next Article
Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems
Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming
1. | Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, Netherlands |
References:
[1] |
C. Bachoc and F. Vallentin, New upper bounds for kissing numbers from semidefinite programming,, J. Amer. Math. Soc., 21 (2008), 909.
doi: 10.1090/S0894-0347-07-00589-9. |
[2] |
C. Bachoc, D. Gijswijt, A. Schrijver and F. Vallentin, Invariant semidefinite programs,, in, (2012), 219.
doi: 10.1007/978-1-4614-0769-0_9. |
[3] |
Y.-Q. Bai, E. de Klerk, D. V. Pasechnik and R. Sotirov, Exploiting group symmetry in truss topology optimization,, Optimization and Engineering, 10 (2009), 331.
doi: 10.1007/s11081-008-9050-6. |
[4] |
P. J. Cameron, Coherent configurations, association schemes and permutation groups,, in, (2003), 55.
|
[5] |
P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, E. Udovina and D. Vaintrob, Introduction to representation theory, preprint,, , (). Google Scholar |
[6] |
D. Gijswijt, "Matrix Algebras and Semidefinite Programming Techniques for Codes,", Ph. D. Thesis, (2005). Google Scholar |
[7] |
D. Gijswijt, A. Schrijver and H. Tanaka, New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming,, Journal of Combinatorial Theory, 113 (2006), 1719.
doi: 10.1016/j.jcta.2006.03.010. |
[8] |
K. Gatermann and P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares,, J. Pure and Applied Algebra, 192 (2004), 95.
doi: 10.1016/j.jpaa.2003.12.011. |
[9] |
C. Godsil, "Association Schemes,", Lecture notes, (2010). Google Scholar |
[10] |
A. Graham, "Kroneker Products and Matrix Calculus with Applications,", John Wiley and Sons, (1981).
doi: ISBN-13/978-0-4702-7300-5. |
[11] |
D. G. Higman, Coherent algebras,, Linear Algebra Applications, 93 (1987), 209.
doi: 10.1016/S0024-3795(87)90326-0. |
[12] |
R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1990).
doi: ISBN-13/978-0-5213-8632-6. |
[13] |
Y. Kanno, M. Ohsaki, K. Murota and N. Katoh, Group symmetry in interior-point methods for semidefinite program,, Optimization and Engineering, 2 (2001), 293.
doi: 10.1023/A:1015366416311. |
[14] |
E. de Klerk, Exploiting special structure in semidefinite programming: a survey, of theory and applications,, European Journal of Operational Research, 201 (2010), 1.
doi: 10.1016/j.ejor.2009.01.025. |
[15] |
E. de Klerk, C. Dobre and D. V. Pasechnik, Numerical block diagonalization of matrix *-algebras with application to semidefinite programming,, Mathematical Programming-B, 129 (2011), 91.
doi: 10.1007/s10107-011-0461-3. |
[16] |
E. de Klerk, C. Dobre, D. V. Pasechnik and R. Sotirov, On semidefinite programming relaxations of maximum k-section,, Mathematical Programming-B, (): 10107. Google Scholar |
[17] |
E. de Klerk and C. Dobre, A comparison of lower bounds for the Symmetric Circulant Traveling Salseman Problem,, Discrete Applied Mathematics, 159 (2011), 1815.
doi: 10.1016/j.dam.2011.01.026. |
[18] |
E. de Klerk, D. V. Pasechnik and A. Schrijver, Reduction of symmetric semidefinite programs using the regular *-representation,, Mathematical Programming-B, 109 (2007), 613.
doi: 10.1007/s10107-006-0039-7. |
[19] |
E. de Klerk, M. W. Newman, D. V. Pasechnik and R. Sotirov, On the Lovász $\vartheta$-number of almost regular graphs with application to Erdös-Rényi graphs,, European Journal of Combinatorics, 31 (2009), 879.
doi: 10.1016/j.ejc.2008.07.022. |
[20] |
E. de Klerk, J. Maharry, D. V. Pasechnik, B. Richter and G. Salazar, Improved bounds for the crossing numbers of km,n and kn,, SIAM Journal on Discrete Mathematics, 20 (2006), 189.
doi: 10.1137/S0895480104442741. |
[21] |
E. de Klerk and R. Sotirov, Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem,, Mathematical Programming, 122 (2010), 225.
doi: 10.1007/s10107-008-0246-5. |
[22] |
M. Kojima, S. Kojima and S. Hara, Linear algebra for semidefinite programming,, in, (1997), 1.
|
[23] |
M. Laurent, Strengthened semidefinite bounds for codes,, Mathematical Programming, 109 (2007), 239.
doi: 10.1007/s10107-006-0030-3. |
[24] |
L. Lovász, On the Shannon capacity of a graph,, IEEE Transactions on Information theory, 25 (1979), 1.
doi: 10.1109/TIT.1979.1055985. |
[25] |
T. Maehara and K. Murota, A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components,, Japan Journal of Industrial and Applied Mathematics, 27 (2010), 263.
doi: 10.1007/s13160-010-0007-8. |
[26] |
R. J. McEliece, E. R. Rodemich and H. C. Rumsey, The Lovász bound and some generalizations,, Journal of Combinatorics, 3 (1978), 134.
|
[27] |
K. Murota, Y. Kanno, M. Kojima and S. Kojima, A numerical algorithm for block-diagonal decomposition of matrix *-algebras with application to semidefinite programming,, Japan Journal of Industrial and Applied Mathematics, 27 (2010), 125.
doi: 10.1007/s13160-010-0006-9. |
[28] |
A. Schrijver, A comparison of the Delsarte and Lovász bounds,, IEEE Transactions on Information Theory, 25 (1979), 425.
doi: 10.1109/TIT.1979.1056072. |
[29] |
A. Schrijver, New code upper bounds from the Terwilliger algebra,, IEEE Transactions on Information Theory, 51 (2005), 2859.
doi: 10.1109/TIT.2005.851748. |
[30] |
F. Vallentin, Symmetry in semidefinite programs,, Linear Algebra and Applications, 430 (2009), 360.
doi: 10.1016/j.laa.2008.07.025. |
[31] |
J. H. M. Wedderburn, On hypercomplex numbers,, Proceedings of the London Mathematical Society, 6 (1907), 77.
doi: 10.1112/plms/s2-6.1.77. |
show all references
References:
[1] |
C. Bachoc and F. Vallentin, New upper bounds for kissing numbers from semidefinite programming,, J. Amer. Math. Soc., 21 (2008), 909.
doi: 10.1090/S0894-0347-07-00589-9. |
[2] |
C. Bachoc, D. Gijswijt, A. Schrijver and F. Vallentin, Invariant semidefinite programs,, in, (2012), 219.
doi: 10.1007/978-1-4614-0769-0_9. |
[3] |
Y.-Q. Bai, E. de Klerk, D. V. Pasechnik and R. Sotirov, Exploiting group symmetry in truss topology optimization,, Optimization and Engineering, 10 (2009), 331.
doi: 10.1007/s11081-008-9050-6. |
[4] |
P. J. Cameron, Coherent configurations, association schemes and permutation groups,, in, (2003), 55.
|
[5] |
P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, E. Udovina and D. Vaintrob, Introduction to representation theory, preprint,, , (). Google Scholar |
[6] |
D. Gijswijt, "Matrix Algebras and Semidefinite Programming Techniques for Codes,", Ph. D. Thesis, (2005). Google Scholar |
[7] |
D. Gijswijt, A. Schrijver and H. Tanaka, New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming,, Journal of Combinatorial Theory, 113 (2006), 1719.
doi: 10.1016/j.jcta.2006.03.010. |
[8] |
K. Gatermann and P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares,, J. Pure and Applied Algebra, 192 (2004), 95.
doi: 10.1016/j.jpaa.2003.12.011. |
[9] |
C. Godsil, "Association Schemes,", Lecture notes, (2010). Google Scholar |
[10] |
A. Graham, "Kroneker Products and Matrix Calculus with Applications,", John Wiley and Sons, (1981).
doi: ISBN-13/978-0-4702-7300-5. |
[11] |
D. G. Higman, Coherent algebras,, Linear Algebra Applications, 93 (1987), 209.
doi: 10.1016/S0024-3795(87)90326-0. |
[12] |
R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1990).
doi: ISBN-13/978-0-5213-8632-6. |
[13] |
Y. Kanno, M. Ohsaki, K. Murota and N. Katoh, Group symmetry in interior-point methods for semidefinite program,, Optimization and Engineering, 2 (2001), 293.
doi: 10.1023/A:1015366416311. |
[14] |
E. de Klerk, Exploiting special structure in semidefinite programming: a survey, of theory and applications,, European Journal of Operational Research, 201 (2010), 1.
doi: 10.1016/j.ejor.2009.01.025. |
[15] |
E. de Klerk, C. Dobre and D. V. Pasechnik, Numerical block diagonalization of matrix *-algebras with application to semidefinite programming,, Mathematical Programming-B, 129 (2011), 91.
doi: 10.1007/s10107-011-0461-3. |
[16] |
E. de Klerk, C. Dobre, D. V. Pasechnik and R. Sotirov, On semidefinite programming relaxations of maximum k-section,, Mathematical Programming-B, (): 10107. Google Scholar |
[17] |
E. de Klerk and C. Dobre, A comparison of lower bounds for the Symmetric Circulant Traveling Salseman Problem,, Discrete Applied Mathematics, 159 (2011), 1815.
doi: 10.1016/j.dam.2011.01.026. |
[18] |
E. de Klerk, D. V. Pasechnik and A. Schrijver, Reduction of symmetric semidefinite programs using the regular *-representation,, Mathematical Programming-B, 109 (2007), 613.
doi: 10.1007/s10107-006-0039-7. |
[19] |
E. de Klerk, M. W. Newman, D. V. Pasechnik and R. Sotirov, On the Lovász $\vartheta$-number of almost regular graphs with application to Erdös-Rényi graphs,, European Journal of Combinatorics, 31 (2009), 879.
doi: 10.1016/j.ejc.2008.07.022. |
[20] |
E. de Klerk, J. Maharry, D. V. Pasechnik, B. Richter and G. Salazar, Improved bounds for the crossing numbers of km,n and kn,, SIAM Journal on Discrete Mathematics, 20 (2006), 189.
doi: 10.1137/S0895480104442741. |
[21] |
E. de Klerk and R. Sotirov, Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem,, Mathematical Programming, 122 (2010), 225.
doi: 10.1007/s10107-008-0246-5. |
[22] |
M. Kojima, S. Kojima and S. Hara, Linear algebra for semidefinite programming,, in, (1997), 1.
|
[23] |
M. Laurent, Strengthened semidefinite bounds for codes,, Mathematical Programming, 109 (2007), 239.
doi: 10.1007/s10107-006-0030-3. |
[24] |
L. Lovász, On the Shannon capacity of a graph,, IEEE Transactions on Information theory, 25 (1979), 1.
doi: 10.1109/TIT.1979.1055985. |
[25] |
T. Maehara and K. Murota, A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components,, Japan Journal of Industrial and Applied Mathematics, 27 (2010), 263.
doi: 10.1007/s13160-010-0007-8. |
[26] |
R. J. McEliece, E. R. Rodemich and H. C. Rumsey, The Lovász bound and some generalizations,, Journal of Combinatorics, 3 (1978), 134.
|
[27] |
K. Murota, Y. Kanno, M. Kojima and S. Kojima, A numerical algorithm for block-diagonal decomposition of matrix *-algebras with application to semidefinite programming,, Japan Journal of Industrial and Applied Mathematics, 27 (2010), 125.
doi: 10.1007/s13160-010-0006-9. |
[28] |
A. Schrijver, A comparison of the Delsarte and Lovász bounds,, IEEE Transactions on Information Theory, 25 (1979), 425.
doi: 10.1109/TIT.1979.1056072. |
[29] |
A. Schrijver, New code upper bounds from the Terwilliger algebra,, IEEE Transactions on Information Theory, 51 (2005), 2859.
doi: 10.1109/TIT.2005.851748. |
[30] |
F. Vallentin, Symmetry in semidefinite programs,, Linear Algebra and Applications, 430 (2009), 360.
doi: 10.1016/j.laa.2008.07.025. |
[31] |
J. H. M. Wedderburn, On hypercomplex numbers,, Proceedings of the London Mathematical Society, 6 (1907), 77.
doi: 10.1112/plms/s2-6.1.77. |
[1] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[2] |
Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307 |
[3] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[4] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124 |
[5] |
Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086 |
[6] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[7] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[8] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[9] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[10] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[11] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[12] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[13] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[14] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[15] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[16] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[17] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[18] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[19] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[20] |
Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]