2013, 3(2): 379-388. doi: 10.3934/naco.2013.3.379

Index-range monotonicity and index-proper splittings of matrices

1. 

School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751 013, Odisha, India, India

Received  April 2012 Revised  January 2013 Published  April 2013

Index-range monotonicity is proposed, and some characterizations of this notion are obtained. Then different convergence and comparison theorems are presented using several new subclasses of index-proper splittings.
Citation: Litismita Jena, Sabyasachi Pani. Index-range monotonicity and index-proper splittings of matrices. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 379-388. doi: 10.3934/naco.2013.3.379
References:
[1]

A. Ben-Israel and T. N. E. Greville, "Generalized Inverses, Theory and Applications,", Springer-Verlag, (2003). Google Scholar

[2]

A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems,, SIAM J. Numer. Anal., 11 (1974), 145. doi: 10.1137/0711015. Google Scholar

[3]

A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse,, SIAM J. Appl. Math., 22 (1972), 155. doi: 10.1137/0122018. Google Scholar

[4]

A. Berman and R. J. Plemmons, Matrix group monotonicity,, Proceedings of the American Mathematical Society, 46 (1974), 355. doi: 10.1090/S0002-9939-1974-0352116-0. Google Scholar

[5]

A. Berman and R. J. Plemmons, Eight types of matrix monotonicity,, Linear Algebra and Appl., 13 (1976), 115. doi: 10.1016/0024-3795(76)90049-5. Google Scholar

[6]

G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse,, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12. Google Scholar

[7]

L. Collatz, Aufgaben monotoner Art,, Arch. Math., 3 (1952), 366. doi: 10.1007/BF01899376. Google Scholar

[8]

L. Jena and D. Mishra, Comparison theorems for Brow and Bran-splittings of matrices,, Linear and Multilinear Algebra, 61 (2013), 35. doi: 10.1080/03081087.2012.661426. Google Scholar

[9]

L. Jena and D. Mishra, BD-splittings of matrices,, Linear Algebra and Appl., 437 (2012), 1162. doi: 10.1016/j.laa.2012.04.009. Google Scholar

[10]

L. Jena and S. Pani, Interval Drazin monotonicity of matrices,, Revised version submitted to Vietnam Journal of Mathematics., (). Google Scholar

[11]

M. A. Krasnosel'skij, A. Je. Lifshits and A. V. Sobolev, "Positive Linear Systems,", Heldermann Verlag, (1989). Google Scholar

[12]

D. Mishra, "Least Elements, Matrix Splittings and Nonnegative Generalized Inverses,", PhD Thesis, (2012). Google Scholar

[13]

D. Mishra and K. C. Sivakumar, Generalizations of matrix monotonicity and their relationships with certain subclasses of proper splittings,, Linear Algebra Appl., 436 (2012), 2604. doi: 10.1016/j.laa.2011.11.016. Google Scholar

[14]

J. E. Peris, A new characterization of inverse-positive matrices,, Linear Algebra Appl., 154/156 (1991), 45. doi: 10.1016/0024-3795(91)90372-4. Google Scholar

[15]

J. E. Peris and B. Subizas, A characterization of weak-monotone matrices,, Linear Algebra Appl., 166 (1992), 167. doi: 10.1016/0024-3795(92)90275-F. Google Scholar

[16]

W. C. Pye, Nonnegative Drazin inverses,, Linear Algebra Appl., 30 (1980), 149. doi: 10.1016/0024-3795(80)90190-1. Google Scholar

[17]

A. Schrijver, "Theory of Linear and Integer Programming,", John Wiley & Sons Ltd., (1986). Google Scholar

[18]

Y. Song, Comparisons of nonnegative splittings of matrices,, Linear Algebra Appl., 154-156 (1991), 154. doi: 10.1016/0024-3795(91)90388-D. Google Scholar

[19]

R. S. Varga, "Matrix Iterative Analysis,", Springer-Verlag, (2000). doi: 10.1007/978-3-642-05156-2. Google Scholar

[20]

Y. Wei, Index splitting for the Drazin inverse and the singular linear system,, Appl. Math. Comput., 95 (1998), 115. doi: 10.1016/S0096-3003(97)10098-4. Google Scholar

[21]

Z. I. Woźnicki, Matrix splitting principles,, Novi Sad J. Math., 28 (1998), 197. Google Scholar

[22]

Z. I. Woźnicki, Nonnegative splitting theory,, Japan J. Industr. Appl. Math., 11 (1994), 289. doi: 10.1007/BF03167226. Google Scholar

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, "Generalized Inverses, Theory and Applications,", Springer-Verlag, (2003). Google Scholar

[2]

A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems,, SIAM J. Numer. Anal., 11 (1974), 145. doi: 10.1137/0711015. Google Scholar

[3]

A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse,, SIAM J. Appl. Math., 22 (1972), 155. doi: 10.1137/0122018. Google Scholar

[4]

A. Berman and R. J. Plemmons, Matrix group monotonicity,, Proceedings of the American Mathematical Society, 46 (1974), 355. doi: 10.1090/S0002-9939-1974-0352116-0. Google Scholar

[5]

A. Berman and R. J. Plemmons, Eight types of matrix monotonicity,, Linear Algebra and Appl., 13 (1976), 115. doi: 10.1016/0024-3795(76)90049-5. Google Scholar

[6]

G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse,, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12. Google Scholar

[7]

L. Collatz, Aufgaben monotoner Art,, Arch. Math., 3 (1952), 366. doi: 10.1007/BF01899376. Google Scholar

[8]

L. Jena and D. Mishra, Comparison theorems for Brow and Bran-splittings of matrices,, Linear and Multilinear Algebra, 61 (2013), 35. doi: 10.1080/03081087.2012.661426. Google Scholar

[9]

L. Jena and D. Mishra, BD-splittings of matrices,, Linear Algebra and Appl., 437 (2012), 1162. doi: 10.1016/j.laa.2012.04.009. Google Scholar

[10]

L. Jena and S. Pani, Interval Drazin monotonicity of matrices,, Revised version submitted to Vietnam Journal of Mathematics., (). Google Scholar

[11]

M. A. Krasnosel'skij, A. Je. Lifshits and A. V. Sobolev, "Positive Linear Systems,", Heldermann Verlag, (1989). Google Scholar

[12]

D. Mishra, "Least Elements, Matrix Splittings and Nonnegative Generalized Inverses,", PhD Thesis, (2012). Google Scholar

[13]

D. Mishra and K. C. Sivakumar, Generalizations of matrix monotonicity and their relationships with certain subclasses of proper splittings,, Linear Algebra Appl., 436 (2012), 2604. doi: 10.1016/j.laa.2011.11.016. Google Scholar

[14]

J. E. Peris, A new characterization of inverse-positive matrices,, Linear Algebra Appl., 154/156 (1991), 45. doi: 10.1016/0024-3795(91)90372-4. Google Scholar

[15]

J. E. Peris and B. Subizas, A characterization of weak-monotone matrices,, Linear Algebra Appl., 166 (1992), 167. doi: 10.1016/0024-3795(92)90275-F. Google Scholar

[16]

W. C. Pye, Nonnegative Drazin inverses,, Linear Algebra Appl., 30 (1980), 149. doi: 10.1016/0024-3795(80)90190-1. Google Scholar

[17]

A. Schrijver, "Theory of Linear and Integer Programming,", John Wiley & Sons Ltd., (1986). Google Scholar

[18]

Y. Song, Comparisons of nonnegative splittings of matrices,, Linear Algebra Appl., 154-156 (1991), 154. doi: 10.1016/0024-3795(91)90388-D. Google Scholar

[19]

R. S. Varga, "Matrix Iterative Analysis,", Springer-Verlag, (2000). doi: 10.1007/978-3-642-05156-2. Google Scholar

[20]

Y. Wei, Index splitting for the Drazin inverse and the singular linear system,, Appl. Math. Comput., 95 (1998), 115. doi: 10.1016/S0096-3003(97)10098-4. Google Scholar

[21]

Z. I. Woźnicki, Matrix splitting principles,, Novi Sad J. Math., 28 (1998), 197. Google Scholar

[22]

Z. I. Woźnicki, Nonnegative splitting theory,, Japan J. Industr. Appl. Math., 11 (1994), 289. doi: 10.1007/BF03167226. Google Scholar

[1]

Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002

[2]

Haifeng Ma, Xiaoshuang Gao. Further results on the perturbation estimations for the Drazin inverse. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 493-503. doi: 10.3934/naco.2018031

[3]

Ricardo Weder, Dimitri Yafaev. Inverse scattering at a fixed energy for long-range potentials. Inverse Problems & Imaging, 2007, 1 (1) : 217-224. doi: 10.3934/ipi.2007.1.217

[4]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019108

[5]

Debasisha Mishra. Matrix group monotonicity using a dominance notion. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 267-274. doi: 10.3934/naco.2015.5.267

[6]

S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29

[7]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[8]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[9]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[10]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[11]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[12]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[13]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[14]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[15]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[16]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[17]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[18]

Henk Bruin, Sonja Štimac. On isotopy and unimodal inverse limit spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1245-1253. doi: 10.3934/dcds.2012.32.1245

[19]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[20]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]