2013, 3(2): 379-388. doi: 10.3934/naco.2013.3.379

Index-range monotonicity and index-proper splittings of matrices

1. 

School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751 013, Odisha, India, India

Received  April 2012 Revised  January 2013 Published  April 2013

Index-range monotonicity is proposed, and some characterizations of this notion are obtained. Then different convergence and comparison theorems are presented using several new subclasses of index-proper splittings.
Citation: Litismita Jena, Sabyasachi Pani. Index-range monotonicity and index-proper splittings of matrices. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 379-388. doi: 10.3934/naco.2013.3.379
References:
[1]

A. Ben-Israel and T. N. E. Greville, "Generalized Inverses, Theory and Applications," Springer-Verlag, New York, 2003.  Google Scholar

[2]

A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems, SIAM J. Numer. Anal., 11 (1974), 145-154. doi: 10.1137/0711015.  Google Scholar

[3]

A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse, SIAM J. Appl. Math., 22 (1972), 155-161. doi: 10.1137/0122018.  Google Scholar

[4]

A. Berman and R. J. Plemmons, Matrix group monotonicity, Proceedings of the American Mathematical Society, 46 (1974), 355-359. doi: 10.1090/S0002-9939-1974-0352116-0.  Google Scholar

[5]

A. Berman and R. J. Plemmons, Eight types of matrix monotonicity, Linear Algebra and Appl., 13 (1976), 115-123. doi: 10.1016/0024-3795(76)90049-5.  Google Scholar

[6]

G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12-18.  Google Scholar

[7]

L. Collatz, Aufgaben monotoner Art, Arch. Math., 3 (1952), 366-376. doi: 10.1007/BF01899376.  Google Scholar

[8]

L. Jena and D. Mishra, Comparison theorems for Brow and Bran-splittings of matrices, Linear and Multilinear Algebra, 61 (2013), 35-48. doi: 10.1080/03081087.2012.661426.  Google Scholar

[9]

L. Jena and D. Mishra, BD-splittings of matrices, Linear Algebra and Appl., 437 (2012), 1162-1173. doi: 10.1016/j.laa.2012.04.009.  Google Scholar

[10]

L. Jena and S. Pani, Interval Drazin monotonicity of matrices,, Revised version submitted to Vietnam Journal of Mathematics., ().   Google Scholar

[11]

M. A. Krasnosel'skij, A. Je. Lifshits and A. V. Sobolev, "Positive Linear Systems," Heldermann Verlag, Berlin, 1989.  Google Scholar

[12]

D. Mishra, "Least Elements, Matrix Splittings and Nonnegative Generalized Inverses," PhD Thesis, IIT Madras, 2012. Google Scholar

[13]

D. Mishra and K. C. Sivakumar, Generalizations of matrix monotonicity and their relationships with certain subclasses of proper splittings, Linear Algebra Appl., 436 (2012), 2604-2614. doi: 10.1016/j.laa.2011.11.016.  Google Scholar

[14]

J. E. Peris, A new characterization of inverse-positive matrices, Linear Algebra Appl., 154/156 (1991), 45-58. doi: 10.1016/0024-3795(91)90372-4.  Google Scholar

[15]

J. E. Peris and B. Subizas, A characterization of weak-monotone matrices, Linear Algebra Appl., 166 (1992), 167-184. doi: 10.1016/0024-3795(92)90275-F.  Google Scholar

[16]

W. C. Pye, Nonnegative Drazin inverses, Linear Algebra Appl., 30 (1980), 149-153. doi: 10.1016/0024-3795(80)90190-1.  Google Scholar

[17]

A. Schrijver, "Theory of Linear and Integer Programming," John Wiley & Sons Ltd., Chichester, 1986.  Google Scholar

[18]

Y. Song, Comparisons of nonnegative splittings of matrices, Linear Algebra Appl., 154-156 (1991), 453-455. doi: 10.1016/0024-3795(91)90388-D.  Google Scholar

[19]

R. S. Varga, "Matrix Iterative Analysis," Springer-Verlag, Berlin, 2000. doi: 10.1007/978-3-642-05156-2.  Google Scholar

[20]

Y. Wei, Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput., 95 (1998), 115-124. doi: 10.1016/S0096-3003(97)10098-4.  Google Scholar

[21]

Z. I. Woźnicki, Matrix splitting principles, Novi Sad J. Math., 28 (1998), 197-209.  Google Scholar

[22]

Z. I. Woźnicki, Nonnegative splitting theory, Japan J. Industr. Appl. Math., 11 (1994), 289-342. doi: 10.1007/BF03167226.  Google Scholar

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, "Generalized Inverses, Theory and Applications," Springer-Verlag, New York, 2003.  Google Scholar

[2]

A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems, SIAM J. Numer. Anal., 11 (1974), 145-154. doi: 10.1137/0711015.  Google Scholar

[3]

A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse, SIAM J. Appl. Math., 22 (1972), 155-161. doi: 10.1137/0122018.  Google Scholar

[4]

A. Berman and R. J. Plemmons, Matrix group monotonicity, Proceedings of the American Mathematical Society, 46 (1974), 355-359. doi: 10.1090/S0002-9939-1974-0352116-0.  Google Scholar

[5]

A. Berman and R. J. Plemmons, Eight types of matrix monotonicity, Linear Algebra and Appl., 13 (1976), 115-123. doi: 10.1016/0024-3795(76)90049-5.  Google Scholar

[6]

G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12-18.  Google Scholar

[7]

L. Collatz, Aufgaben monotoner Art, Arch. Math., 3 (1952), 366-376. doi: 10.1007/BF01899376.  Google Scholar

[8]

L. Jena and D. Mishra, Comparison theorems for Brow and Bran-splittings of matrices, Linear and Multilinear Algebra, 61 (2013), 35-48. doi: 10.1080/03081087.2012.661426.  Google Scholar

[9]

L. Jena and D. Mishra, BD-splittings of matrices, Linear Algebra and Appl., 437 (2012), 1162-1173. doi: 10.1016/j.laa.2012.04.009.  Google Scholar

[10]

L. Jena and S. Pani, Interval Drazin monotonicity of matrices,, Revised version submitted to Vietnam Journal of Mathematics., ().   Google Scholar

[11]

M. A. Krasnosel'skij, A. Je. Lifshits and A. V. Sobolev, "Positive Linear Systems," Heldermann Verlag, Berlin, 1989.  Google Scholar

[12]

D. Mishra, "Least Elements, Matrix Splittings and Nonnegative Generalized Inverses," PhD Thesis, IIT Madras, 2012. Google Scholar

[13]

D. Mishra and K. C. Sivakumar, Generalizations of matrix monotonicity and their relationships with certain subclasses of proper splittings, Linear Algebra Appl., 436 (2012), 2604-2614. doi: 10.1016/j.laa.2011.11.016.  Google Scholar

[14]

J. E. Peris, A new characterization of inverse-positive matrices, Linear Algebra Appl., 154/156 (1991), 45-58. doi: 10.1016/0024-3795(91)90372-4.  Google Scholar

[15]

J. E. Peris and B. Subizas, A characterization of weak-monotone matrices, Linear Algebra Appl., 166 (1992), 167-184. doi: 10.1016/0024-3795(92)90275-F.  Google Scholar

[16]

W. C. Pye, Nonnegative Drazin inverses, Linear Algebra Appl., 30 (1980), 149-153. doi: 10.1016/0024-3795(80)90190-1.  Google Scholar

[17]

A. Schrijver, "Theory of Linear and Integer Programming," John Wiley & Sons Ltd., Chichester, 1986.  Google Scholar

[18]

Y. Song, Comparisons of nonnegative splittings of matrices, Linear Algebra Appl., 154-156 (1991), 453-455. doi: 10.1016/0024-3795(91)90388-D.  Google Scholar

[19]

R. S. Varga, "Matrix Iterative Analysis," Springer-Verlag, Berlin, 2000. doi: 10.1007/978-3-642-05156-2.  Google Scholar

[20]

Y. Wei, Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput., 95 (1998), 115-124. doi: 10.1016/S0096-3003(97)10098-4.  Google Scholar

[21]

Z. I. Woźnicki, Matrix splitting principles, Novi Sad J. Math., 28 (1998), 197-209.  Google Scholar

[22]

Z. I. Woźnicki, Nonnegative splitting theory, Japan J. Industr. Appl. Math., 11 (1994), 289-342. doi: 10.1007/BF03167226.  Google Scholar

[1]

Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002

[2]

Haifeng Ma, Xiaoshuang Gao. Further results on the perturbation estimations for the Drazin inverse. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 493-503. doi: 10.3934/naco.2018031

[3]

Ricardo Weder, Dimitri Yafaev. Inverse scattering at a fixed energy for long-range potentials. Inverse Problems & Imaging, 2007, 1 (1) : 217-224. doi: 10.3934/ipi.2007.1.217

[4]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, 2021, 15 (2) : 367-386. doi: 10.3934/ipi.2020072

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Debasisha Mishra. Matrix group monotonicity using a dominance notion. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 267-274. doi: 10.3934/naco.2015.5.267

[7]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[8]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[9]

S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29

[10]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[11]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[12]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[13]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[14]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[15]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[16]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[17]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[18]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems & Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[19]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[20]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

 Impact Factor: 

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]