\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Index-range monotonicity and index-proper splittings of matrices

Abstract / Introduction Related Papers Cited by
  • Index-range monotonicity is proposed, and some characterizations of this notion are obtained. Then different convergence and comparison theorems are presented using several new subclasses of index-proper splittings.
    Mathematics Subject Classification: Primary: 15A09, 65F15, 65F20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ben-Israel and T. N. E. Greville, "Generalized Inverses, Theory and Applications," Springer-Verlag, New York, 2003.

    [2]

    A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems, SIAM J. Numer. Anal., 11 (1974), 145-154.doi: 10.1137/0711015.

    [3]

    A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse, SIAM J. Appl. Math., 22 (1972), 155-161.doi: 10.1137/0122018.

    [4]

    A. Berman and R. J. Plemmons, Matrix group monotonicity, Proceedings of the American Mathematical Society, 46 (1974), 355-359.doi: 10.1090/S0002-9939-1974-0352116-0.

    [5]

    A. Berman and R. J. Plemmons, Eight types of matrix monotonicity, Linear Algebra and Appl., 13 (1976), 115-123.doi: 10.1016/0024-3795(76)90049-5.

    [6]

    G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12-18.

    [7]

    L. Collatz, Aufgaben monotoner Art, Arch. Math., 3 (1952), 366-376.doi: 10.1007/BF01899376.

    [8]

    L. Jena and D. Mishra, Comparison theorems for Brow and Bran-splittings of matrices, Linear and Multilinear Algebra, 61 (2013), 35-48.doi: 10.1080/03081087.2012.661426.

    [9]

    L. Jena and D. Mishra, BD-splittings of matrices, Linear Algebra and Appl., 437 (2012), 1162-1173.doi: 10.1016/j.laa.2012.04.009.

    [10]

    L. Jena and S. PaniInterval Drazin monotonicity of matrices, Revised version submitted to Vietnam Journal of Mathematics.

    [11]

    M. A. Krasnosel'skij, A. Je. Lifshits and A. V. Sobolev, "Positive Linear Systems," Heldermann Verlag, Berlin, 1989.

    [12]

    D. Mishra, "Least Elements, Matrix Splittings and Nonnegative Generalized Inverses," PhD Thesis, IIT Madras, 2012.

    [13]

    D. Mishra and K. C. Sivakumar, Generalizations of matrix monotonicity and their relationships with certain subclasses of proper splittings, Linear Algebra Appl., 436 (2012), 2604-2614.doi: 10.1016/j.laa.2011.11.016.

    [14]

    J. E. Peris, A new characterization of inverse-positive matrices, Linear Algebra Appl., 154/156 (1991), 45-58.doi: 10.1016/0024-3795(91)90372-4.

    [15]

    J. E. Peris and B. Subizas, A characterization of weak-monotone matrices, Linear Algebra Appl., 166 (1992), 167-184.doi: 10.1016/0024-3795(92)90275-F.

    [16]

    W. C. Pye, Nonnegative Drazin inverses, Linear Algebra Appl., 30 (1980), 149-153.doi: 10.1016/0024-3795(80)90190-1.

    [17]

    A. Schrijver, "Theory of Linear and Integer Programming," John Wiley & Sons Ltd., Chichester, 1986.

    [18]

    Y. Song, Comparisons of nonnegative splittings of matrices, Linear Algebra Appl., 154-156 (1991), 453-455.doi: 10.1016/0024-3795(91)90388-D.

    [19]

    R. S. Varga, "Matrix Iterative Analysis," Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-642-05156-2.

    [20]

    Y. Wei, Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput., 95 (1998), 115-124.doi: 10.1016/S0096-3003(97)10098-4.

    [21]

    Z. I. Woźnicki, Matrix splitting principles, Novi Sad J. Math., 28 (1998), 197-209.

    [22]

    Z. I. Woźnicki, Nonnegative splitting theory, Japan J. Industr. Appl. Math., 11 (1994), 289-342.doi: 10.1007/BF03167226.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return