2013, 3(2): 379-388. doi: 10.3934/naco.2013.3.379

Index-range monotonicity and index-proper splittings of matrices

1. 

School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751 013, Odisha, India, India

Received  April 2012 Revised  January 2013 Published  April 2013

Index-range monotonicity is proposed, and some characterizations of this notion are obtained. Then different convergence and comparison theorems are presented using several new subclasses of index-proper splittings.
Citation: Litismita Jena, Sabyasachi Pani. Index-range monotonicity and index-proper splittings of matrices. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 379-388. doi: 10.3934/naco.2013.3.379
References:
[1]

A. Ben-Israel and T. N. E. Greville, "Generalized Inverses, Theory and Applications,", Springer-Verlag, (2003).   Google Scholar

[2]

A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems,, SIAM J. Numer. Anal., 11 (1974), 145.  doi: 10.1137/0711015.  Google Scholar

[3]

A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse,, SIAM J. Appl. Math., 22 (1972), 155.  doi: 10.1137/0122018.  Google Scholar

[4]

A. Berman and R. J. Plemmons, Matrix group monotonicity,, Proceedings of the American Mathematical Society, 46 (1974), 355.  doi: 10.1090/S0002-9939-1974-0352116-0.  Google Scholar

[5]

A. Berman and R. J. Plemmons, Eight types of matrix monotonicity,, Linear Algebra and Appl., 13 (1976), 115.  doi: 10.1016/0024-3795(76)90049-5.  Google Scholar

[6]

G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse,, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12.   Google Scholar

[7]

L. Collatz, Aufgaben monotoner Art,, Arch. Math., 3 (1952), 366.  doi: 10.1007/BF01899376.  Google Scholar

[8]

L. Jena and D. Mishra, Comparison theorems for Brow and Bran-splittings of matrices,, Linear and Multilinear Algebra, 61 (2013), 35.  doi: 10.1080/03081087.2012.661426.  Google Scholar

[9]

L. Jena and D. Mishra, BD-splittings of matrices,, Linear Algebra and Appl., 437 (2012), 1162.  doi: 10.1016/j.laa.2012.04.009.  Google Scholar

[10]

L. Jena and S. Pani, Interval Drazin monotonicity of matrices,, Revised version submitted to Vietnam Journal of Mathematics., ().   Google Scholar

[11]

M. A. Krasnosel'skij, A. Je. Lifshits and A. V. Sobolev, "Positive Linear Systems,", Heldermann Verlag, (1989).   Google Scholar

[12]

D. Mishra, "Least Elements, Matrix Splittings and Nonnegative Generalized Inverses,", PhD Thesis, (2012).   Google Scholar

[13]

D. Mishra and K. C. Sivakumar, Generalizations of matrix monotonicity and their relationships with certain subclasses of proper splittings,, Linear Algebra Appl., 436 (2012), 2604.  doi: 10.1016/j.laa.2011.11.016.  Google Scholar

[14]

J. E. Peris, A new characterization of inverse-positive matrices,, Linear Algebra Appl., 154/156 (1991), 45.  doi: 10.1016/0024-3795(91)90372-4.  Google Scholar

[15]

J. E. Peris and B. Subizas, A characterization of weak-monotone matrices,, Linear Algebra Appl., 166 (1992), 167.  doi: 10.1016/0024-3795(92)90275-F.  Google Scholar

[16]

W. C. Pye, Nonnegative Drazin inverses,, Linear Algebra Appl., 30 (1980), 149.  doi: 10.1016/0024-3795(80)90190-1.  Google Scholar

[17]

A. Schrijver, "Theory of Linear and Integer Programming,", John Wiley & Sons Ltd., (1986).   Google Scholar

[18]

Y. Song, Comparisons of nonnegative splittings of matrices,, Linear Algebra Appl., 154-156 (1991), 154.  doi: 10.1016/0024-3795(91)90388-D.  Google Scholar

[19]

R. S. Varga, "Matrix Iterative Analysis,", Springer-Verlag, (2000).  doi: 10.1007/978-3-642-05156-2.  Google Scholar

[20]

Y. Wei, Index splitting for the Drazin inverse and the singular linear system,, Appl. Math. Comput., 95 (1998), 115.  doi: 10.1016/S0096-3003(97)10098-4.  Google Scholar

[21]

Z. I. Woźnicki, Matrix splitting principles,, Novi Sad J. Math., 28 (1998), 197.   Google Scholar

[22]

Z. I. Woźnicki, Nonnegative splitting theory,, Japan J. Industr. Appl. Math., 11 (1994), 289.  doi: 10.1007/BF03167226.  Google Scholar

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, "Generalized Inverses, Theory and Applications,", Springer-Verlag, (2003).   Google Scholar

[2]

A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems,, SIAM J. Numer. Anal., 11 (1974), 145.  doi: 10.1137/0711015.  Google Scholar

[3]

A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse,, SIAM J. Appl. Math., 22 (1972), 155.  doi: 10.1137/0122018.  Google Scholar

[4]

A. Berman and R. J. Plemmons, Matrix group monotonicity,, Proceedings of the American Mathematical Society, 46 (1974), 355.  doi: 10.1090/S0002-9939-1974-0352116-0.  Google Scholar

[5]

A. Berman and R. J. Plemmons, Eight types of matrix monotonicity,, Linear Algebra and Appl., 13 (1976), 115.  doi: 10.1016/0024-3795(76)90049-5.  Google Scholar

[6]

G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse,, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12.   Google Scholar

[7]

L. Collatz, Aufgaben monotoner Art,, Arch. Math., 3 (1952), 366.  doi: 10.1007/BF01899376.  Google Scholar

[8]

L. Jena and D. Mishra, Comparison theorems for Brow and Bran-splittings of matrices,, Linear and Multilinear Algebra, 61 (2013), 35.  doi: 10.1080/03081087.2012.661426.  Google Scholar

[9]

L. Jena and D. Mishra, BD-splittings of matrices,, Linear Algebra and Appl., 437 (2012), 1162.  doi: 10.1016/j.laa.2012.04.009.  Google Scholar

[10]

L. Jena and S. Pani, Interval Drazin monotonicity of matrices,, Revised version submitted to Vietnam Journal of Mathematics., ().   Google Scholar

[11]

M. A. Krasnosel'skij, A. Je. Lifshits and A. V. Sobolev, "Positive Linear Systems,", Heldermann Verlag, (1989).   Google Scholar

[12]

D. Mishra, "Least Elements, Matrix Splittings and Nonnegative Generalized Inverses,", PhD Thesis, (2012).   Google Scholar

[13]

D. Mishra and K. C. Sivakumar, Generalizations of matrix monotonicity and their relationships with certain subclasses of proper splittings,, Linear Algebra Appl., 436 (2012), 2604.  doi: 10.1016/j.laa.2011.11.016.  Google Scholar

[14]

J. E. Peris, A new characterization of inverse-positive matrices,, Linear Algebra Appl., 154/156 (1991), 45.  doi: 10.1016/0024-3795(91)90372-4.  Google Scholar

[15]

J. E. Peris and B. Subizas, A characterization of weak-monotone matrices,, Linear Algebra Appl., 166 (1992), 167.  doi: 10.1016/0024-3795(92)90275-F.  Google Scholar

[16]

W. C. Pye, Nonnegative Drazin inverses,, Linear Algebra Appl., 30 (1980), 149.  doi: 10.1016/0024-3795(80)90190-1.  Google Scholar

[17]

A. Schrijver, "Theory of Linear and Integer Programming,", John Wiley & Sons Ltd., (1986).   Google Scholar

[18]

Y. Song, Comparisons of nonnegative splittings of matrices,, Linear Algebra Appl., 154-156 (1991), 154.  doi: 10.1016/0024-3795(91)90388-D.  Google Scholar

[19]

R. S. Varga, "Matrix Iterative Analysis,", Springer-Verlag, (2000).  doi: 10.1007/978-3-642-05156-2.  Google Scholar

[20]

Y. Wei, Index splitting for the Drazin inverse and the singular linear system,, Appl. Math. Comput., 95 (1998), 115.  doi: 10.1016/S0096-3003(97)10098-4.  Google Scholar

[21]

Z. I. Woźnicki, Matrix splitting principles,, Novi Sad J. Math., 28 (1998), 197.   Google Scholar

[22]

Z. I. Woźnicki, Nonnegative splitting theory,, Japan J. Industr. Appl. Math., 11 (1994), 289.  doi: 10.1007/BF03167226.  Google Scholar

[1]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

 Impact Factor: 

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]