2013, 3(3): 389-406. doi: 10.3934/naco.2013.3.389

Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon

1. 

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S.Kovalevskaya str., 16, Ekaterinburg, 620990, Russian Federation, Russian Federation

Received  November 2011 Revised  February 2013 Published  July 2013

The research is focused on an algorithm for constructing solutions of optimal control problems with infinite time horizon arising, for example, in economic growth models.   
       There are several significant difficulties which complicate solution of the problem, such as: (1) stiffness of Hamiltonian systems generated by the Pontryagin maximum principle; (2) non-stability of equilibrium points; (3) lack of initial conditions for adjoint variables.
     The analysis of the Hamiltonian system implemented in this paper for optimal control problems with infinite horizon provides results effective for construction of optimal solutions, namely, (1) if a steady state exists and satisfies regularity conditions then there exists a nonlinear stabilizer for the Hamiltonian system; (2) a nonlinear stabilizer generates the system with excluding adjoint variables whose trajectories (according to qualitative analysis of the corresponding differential equations) approximate solutions of the original Hamiltonian system in a neighborhood of the steady state;(3) trajectories of the stabilized system serve as first approximations and localize search of optimal trajectories.    
    The results of numerical experiments are presented by modeling of an economic growth system with investment in capital and enhancement of the labor efficiency.
Citation: Alexander Tarasyev, Anastasia Usova. Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 389-406. doi: 10.3934/naco.2013.3.389
References:
[1]

S. M. Aseev and A. V. Kryazhimskiy, The Pontryagin maximum principle and optimal economic growth problems,, Proceedings of the Steklov Institute of Mathematics, 257 (2007). Google Scholar

[2]

R. U. Ayres and B. Warr, "The Economic Growth Engine: How Energy and Work Drive Material Prosperity,", Edward Elgar Publishing, (2009). Google Scholar

[3]

E. J. Balder, An existance result for optimal economic growth problems,, J. Math. Anal. Appl., 95 (1983), 195. doi: 10.1016/0022-247X(83)90143-9. Google Scholar

[4]

M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory,, Applied Mathematics and Optimization, 15 (1987), 1. doi: 10.1007/BF01442644. Google Scholar

[5]

G. Feichtinger and V. M. Veliov, On a distributed control problem arising in dynamic optimization of a fixed-size population,, SIAM J. Optim., 18 (2007), 980. doi: 10.1137/06066148X. Google Scholar

[6]

D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes,", Springer-Verlag, (2008). doi: 10.1007/978-3-540-77647-5. Google Scholar

[7]

Ph. Hartman, "Ordinary Differential Equations,", J. Wiley and Sons, (1964). Google Scholar

[8]

A. A. Krasovskii, Assessment of the impact of aggregated economic factors on optimal consumption in models of economic growth,, IIASA Interim Report IR-06-050, (2006), 06. Google Scholar

[9]

A. N. Krasovskii and N. N. Krasovskii, "Control Under Lack of Information,", Birkhauser, (1995). doi: 10.1007/978-1-4612-2568-3. Google Scholar

[10]

N. N. Krasovskii and A. I. Subbotin, "Game-Theoretical Control Problems,", Springer, (1988). doi: 10.1007/978-1-4612-3716-7. Google Scholar

[11]

A. A. Krasovskii and A. M. Tarasyev, Dynamic optimization of investments in the economic growth models,, Automation and Remote Control, 68 (2007), 1765. doi: 10.1134/S0005117907100050. Google Scholar

[12]

A. A. Krasovskii and A. M. Tarasyev, Conjugation of Hamiltonian systems in optimal control problems,, Preprints of the 17th World Congress of the International Federation of Automatic Control IFAC, (2008), 7784. Google Scholar

[13]

S. A. Reshmin, A. M. Tarasyev and C. Watanabe, A dynamic model of R & D investment,, Journal of Applied Mathematics and Mechanics, 65 (2001), 395. doi: 10.1016/S0021-8928(01)00045-4. Google Scholar

[14]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience, (1962). Google Scholar

[15]

W. Sanderson, The SEDIM model: version 0.1,, IIASA Interim Report IR-04-041, (2004), 04. Google Scholar

[16]

K. Shell, Applications of Pontryagin's maximum principle to economics,, Mathematical Systems Theory and Economics, 1 (1969), 241. Google Scholar

[17]

R. M. Solow, "Growth Theory: An Exposition,", New York, (1970). Google Scholar

[18]

A. M. Tarasyev and A. A. Usova, Construction of a regulator for the Hamiltonian system in a two-sector economic growth model,, Proceedings of the Steklov Institute of Mathematics, 271 (2010). Google Scholar

show all references

References:
[1]

S. M. Aseev and A. V. Kryazhimskiy, The Pontryagin maximum principle and optimal economic growth problems,, Proceedings of the Steklov Institute of Mathematics, 257 (2007). Google Scholar

[2]

R. U. Ayres and B. Warr, "The Economic Growth Engine: How Energy and Work Drive Material Prosperity,", Edward Elgar Publishing, (2009). Google Scholar

[3]

E. J. Balder, An existance result for optimal economic growth problems,, J. Math. Anal. Appl., 95 (1983), 195. doi: 10.1016/0022-247X(83)90143-9. Google Scholar

[4]

M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory,, Applied Mathematics and Optimization, 15 (1987), 1. doi: 10.1007/BF01442644. Google Scholar

[5]

G. Feichtinger and V. M. Veliov, On a distributed control problem arising in dynamic optimization of a fixed-size population,, SIAM J. Optim., 18 (2007), 980. doi: 10.1137/06066148X. Google Scholar

[6]

D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes,", Springer-Verlag, (2008). doi: 10.1007/978-3-540-77647-5. Google Scholar

[7]

Ph. Hartman, "Ordinary Differential Equations,", J. Wiley and Sons, (1964). Google Scholar

[8]

A. A. Krasovskii, Assessment of the impact of aggregated economic factors on optimal consumption in models of economic growth,, IIASA Interim Report IR-06-050, (2006), 06. Google Scholar

[9]

A. N. Krasovskii and N. N. Krasovskii, "Control Under Lack of Information,", Birkhauser, (1995). doi: 10.1007/978-1-4612-2568-3. Google Scholar

[10]

N. N. Krasovskii and A. I. Subbotin, "Game-Theoretical Control Problems,", Springer, (1988). doi: 10.1007/978-1-4612-3716-7. Google Scholar

[11]

A. A. Krasovskii and A. M. Tarasyev, Dynamic optimization of investments in the economic growth models,, Automation and Remote Control, 68 (2007), 1765. doi: 10.1134/S0005117907100050. Google Scholar

[12]

A. A. Krasovskii and A. M. Tarasyev, Conjugation of Hamiltonian systems in optimal control problems,, Preprints of the 17th World Congress of the International Federation of Automatic Control IFAC, (2008), 7784. Google Scholar

[13]

S. A. Reshmin, A. M. Tarasyev and C. Watanabe, A dynamic model of R & D investment,, Journal of Applied Mathematics and Mechanics, 65 (2001), 395. doi: 10.1016/S0021-8928(01)00045-4. Google Scholar

[14]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience, (1962). Google Scholar

[15]

W. Sanderson, The SEDIM model: version 0.1,, IIASA Interim Report IR-04-041, (2004), 04. Google Scholar

[16]

K. Shell, Applications of Pontryagin's maximum principle to economics,, Mathematical Systems Theory and Economics, 1 (1969), 241. Google Scholar

[17]

R. M. Solow, "Growth Theory: An Exposition,", New York, (1970). Google Scholar

[18]

A. M. Tarasyev and A. A. Usova, Construction of a regulator for the Hamiltonian system in a two-sector economic growth model,, Proceedings of the Steklov Institute of Mathematics, 271 (2010). Google Scholar

[1]

Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415

[2]

K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499-510. doi: 10.3934/mbe.2005.2.499

[3]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[4]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[5]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[6]

Ying Zhang, Changjun Yu, Yingtao Xu, Yanqin Bai. Minimizing almost smooth control variation in nonlinear optimal control problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019023

[7]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[8]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[9]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[10]

Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135

[11]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[12]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[13]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[14]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[15]

Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple time-delays. Journal of Industrial & Management Optimization, 2014, 10 (2) : 413-441. doi: 10.3934/jimo.2014.10.413

[16]

Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375-396. doi: 10.3934/mcrf.2013.3.375

[17]

Zhi Guo Feng, K. F. Cedric Yiu, K.L. Mak. Feature extraction of the patterned textile with deformations via optimal control theory. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1055-1069. doi: 10.3934/dcdsb.2011.16.1055

[18]

Cristiana J. Silva, Delfim F. M. Torres. Modeling and optimal control of HIV/AIDS prevention through PrEP. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 119-141. doi: 10.3934/dcdss.2018008

[19]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[20]

Loïc Louison, Abdennebi Omrane, Harry Ozier-Lafontaine, Delphine Picart. Modeling plant nutrient uptake: Mathematical analysis and optimal control. Evolution Equations & Control Theory, 2015, 4 (2) : 193-203. doi: 10.3934/eect.2015.4.193

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]