2013, 3(3): 425-443. doi: 10.3934/naco.2013.3.425

On general nonlinear constrained mechanical systems

1. 

Aerospace and Mechanical Engineering, Civil Engineering, Mathematics, and Information and Operations Management, University of Southern California, Los Angeles, CA 90089-1453, United States

2. 

Department of Mechanical Engineering, Mahidol University, 25/25 Puttamonthon, Nakorn Pathom 73170, Thailand

Received  September 2011 Revised  February 2013 Published  July 2013

This paper develops a new, simple, general, and explicit form of the equations of motion for general constrained mechanical systems that can have holonomic and/or nonholonomic constraints that may or may not be ideal, and that may contain either positive semi-definite or positive definite mass matrices. This is done through the replacement of the actual unconstrained mechanical system, which may have a positive semi-definite mass matrix, with an unconstrained auxiliary system whose mass matrix is positive definite and which is subjected to the same holonomic and/or nonholonomic constraints as those applied to the actual unconstrained mechanical system. A simple, unified fundamental equation that gives in closed-form both the acceleration of the constrained mechanical system and the constraint force is obtained. The results herein provide deeper insights into the behavior of constrained motion and open up new approaches to modeling complex, constrained mechanical systems, such as those encountered in multi-body dynamics.
Citation: Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425
References:
[1]

P. Appell, Sur une forme generale des equations de la dynamique, C. R. Acad. Sci. III, 129 (1899), 459-460.

[2]

P. Appell, Example de mouvement d'un point assujeti a une liason exprimee par une relation non lineaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, 32 (1911), 48-50. doi: 10.1007/BF03014784.

[3]

N. G. Chataev, "Theoretical Mechanics," Mir Publications, Moscow, 1989.

[4]

C. T. Chen, "Linear System Theory and Design," Oxford University Press, New York, 1999.

[5]

P. A. M. Dirac, "Lectures in Quantum Mechanics," New York, Yeshiva University Press, 1964.

[6]

C. Gauss, Uber ein neues allgemeines grundgesetz der mechanik, J. Reine Angew. Math., 4 (1829), 232-235. doi: 10.1515/crll.1829.4.232.

[7]

W. Gibbs, On the fundamental formulae of dynamics, Am. J. Math., 2 (1879), 49-64. doi: 10.2307/2369196.

[8]

H. Goldstein, "Classical Mechanics," Addison-Wesley, Reading, MA, 1981.

[9]

F. Graybill, "Matrices with Applications in Statistics," Wadsworth and Brooks, 1983.

[10]

G. Hamel, "Theoretische Mechanik: Eine Einheitliche Einfuhrung in die Gesamte Mechanik," Springer-Verlag, Berlin, New York, 1949.

[11]

J. L. Lagrange, "Mechanique Analytique," Paris: Mme Ve Courcier, 1787.

[12]

L. A. Pars, "A Treatise on Analytical Dynamics," Woodridge, CT: Oxbow Press, 1979.

[13]

R. Penrose, A generalized inverse of a matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406-413. doi: 10.1017/S0305004100030401.

[14]

A. Schutte and F. E. Udwadia, New approach to the modeling of complex multi-body dynamical systems, Journal of Applied Mechanics, 78 (2011), 11 pages. doi: 10.1115/1.4002329.

[15]

E. C. G. Sudarshan and N. Mukunda, "Classical Dynamics: A Modern Perspective," Wiley, New York, 1974.

[16]

F. E. Udwadia and A. D. Schutte, Equations of motion for general constrained systems in Lagrangian mechanics, Acta Mechanica., 213 (2010), 111-129. doi: 10.1007/s00707-009-0272-2.

[17]

F. E. Udwadia and P. Phohomsiri, Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics, Proceedings of the Royal Society of London A, 462 (2006), 2097-2117. doi: 10.1098/rspa.2006.1662.

[18]

F. E. Udwadia and R. E. Kalaba, A new perspective on constrained motion, Proceedings of the Royal Society of London A, 439 (1992), 407-410. doi: 10.1098/rspa.1992.0158.

[19]

F. E. Udwadia and R. E. Kalaba, An alternative proof for Greville's formula, Journal of Optimization Theory and Applications, 94 (1997), 23-28.

[20]

F. E. Udwadia and R. E. Kalaba, "Analytical Dynamics: A New Approach," Cambridge University Press, 1996. doi: 10.1017/CBO9780511665479.

[21]

F. E. Udwadia and R. E. Kalaba, Explicit equations of motion for mechanical systems with non-ideal constraints, ASME J. Appl. Mech., 68 (2001), 462-467. doi: 10.1115/1.1364492.

[22]

F. E. Udwadia and R. E. Kalaba, On the foundations of analytical dynamics, Int. J. Nonlin. Mech., 37 (2002), 1079-1090. doi: 10.1016/S0020-7462(01)00033-6.

show all references

References:
[1]

P. Appell, Sur une forme generale des equations de la dynamique, C. R. Acad. Sci. III, 129 (1899), 459-460.

[2]

P. Appell, Example de mouvement d'un point assujeti a une liason exprimee par une relation non lineaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, 32 (1911), 48-50. doi: 10.1007/BF03014784.

[3]

N. G. Chataev, "Theoretical Mechanics," Mir Publications, Moscow, 1989.

[4]

C. T. Chen, "Linear System Theory and Design," Oxford University Press, New York, 1999.

[5]

P. A. M. Dirac, "Lectures in Quantum Mechanics," New York, Yeshiva University Press, 1964.

[6]

C. Gauss, Uber ein neues allgemeines grundgesetz der mechanik, J. Reine Angew. Math., 4 (1829), 232-235. doi: 10.1515/crll.1829.4.232.

[7]

W. Gibbs, On the fundamental formulae of dynamics, Am. J. Math., 2 (1879), 49-64. doi: 10.2307/2369196.

[8]

H. Goldstein, "Classical Mechanics," Addison-Wesley, Reading, MA, 1981.

[9]

F. Graybill, "Matrices with Applications in Statistics," Wadsworth and Brooks, 1983.

[10]

G. Hamel, "Theoretische Mechanik: Eine Einheitliche Einfuhrung in die Gesamte Mechanik," Springer-Verlag, Berlin, New York, 1949.

[11]

J. L. Lagrange, "Mechanique Analytique," Paris: Mme Ve Courcier, 1787.

[12]

L. A. Pars, "A Treatise on Analytical Dynamics," Woodridge, CT: Oxbow Press, 1979.

[13]

R. Penrose, A generalized inverse of a matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406-413. doi: 10.1017/S0305004100030401.

[14]

A. Schutte and F. E. Udwadia, New approach to the modeling of complex multi-body dynamical systems, Journal of Applied Mechanics, 78 (2011), 11 pages. doi: 10.1115/1.4002329.

[15]

E. C. G. Sudarshan and N. Mukunda, "Classical Dynamics: A Modern Perspective," Wiley, New York, 1974.

[16]

F. E. Udwadia and A. D. Schutte, Equations of motion for general constrained systems in Lagrangian mechanics, Acta Mechanica., 213 (2010), 111-129. doi: 10.1007/s00707-009-0272-2.

[17]

F. E. Udwadia and P. Phohomsiri, Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics, Proceedings of the Royal Society of London A, 462 (2006), 2097-2117. doi: 10.1098/rspa.2006.1662.

[18]

F. E. Udwadia and R. E. Kalaba, A new perspective on constrained motion, Proceedings of the Royal Society of London A, 439 (1992), 407-410. doi: 10.1098/rspa.1992.0158.

[19]

F. E. Udwadia and R. E. Kalaba, An alternative proof for Greville's formula, Journal of Optimization Theory and Applications, 94 (1997), 23-28.

[20]

F. E. Udwadia and R. E. Kalaba, "Analytical Dynamics: A New Approach," Cambridge University Press, 1996. doi: 10.1017/CBO9780511665479.

[21]

F. E. Udwadia and R. E. Kalaba, Explicit equations of motion for mechanical systems with non-ideal constraints, ASME J. Appl. Mech., 68 (2001), 462-467. doi: 10.1115/1.1364492.

[22]

F. E. Udwadia and R. E. Kalaba, On the foundations of analytical dynamics, Int. J. Nonlin. Mech., 37 (2002), 1079-1090. doi: 10.1016/S0020-7462(01)00033-6.

[1]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[2]

Ai-Li Yang, Yu-Jiang Wu. Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 839-853. doi: 10.3934/naco.2012.2.839

[3]

Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155

[4]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[5]

Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029

[6]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[7]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[8]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems and Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[9]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[10]

Asadollah Aghajani, Craig Cowan. Explicit estimates on positive supersolutions of nonlinear elliptic equations and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2731-2742. doi: 10.3934/dcds.2019114

[11]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[12]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[13]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic and Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009

[14]

Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations and Control Theory, 2020, 9 (2) : 431-446. doi: 10.3934/eect.2020012

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[16]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[17]

Luisa Fermo, Andrea Tosin. Fundamental diagrams for kinetic equations of traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 449-462. doi: 10.3934/dcdss.2014.7.449

[18]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[19]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial and Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

[20]

Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835

 Impact Factor: 

Metrics

  • PDF downloads (148)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]