-
Previous Article
Direct model reference adaptive control of linear systems with input/output delays
- NACO Home
- This Issue
-
Next Article
MAPLE code of the cubic algorithm for multiobjective optimization with box constraints
On general nonlinear constrained mechanical systems
1. | Aerospace and Mechanical Engineering, Civil Engineering, Mathematics, and Information and Operations Management, University of Southern California, Los Angeles, CA 90089-1453, United States |
2. | Department of Mechanical Engineering, Mahidol University, 25/25 Puttamonthon, Nakorn Pathom 73170, Thailand |
References:
[1] |
C. R. Acad. Sci. III, 129 (1899), 459-460. Google Scholar |
[2] |
Rend. Circ. Mat. Palermo, 32 (1911), 48-50.
doi: 10.1007/BF03014784. |
[3] |
Mir Publications, Moscow, 1989. Google Scholar |
[4] |
Oxford University Press, New York, 1999. Google Scholar |
[5] |
New York, Yeshiva University Press, 1964. Google Scholar |
[6] |
J. Reine Angew. Math., 4 (1829), 232-235.
doi: 10.1515/crll.1829.4.232. |
[7] |
Am. J. Math., 2 (1879), 49-64.
doi: 10.2307/2369196. |
[8] |
Addison-Wesley, Reading, MA, 1981. Google Scholar |
[9] |
Wadsworth and Brooks, 1983. |
[10] |
Springer-Verlag, Berlin, New York, 1949. Google Scholar |
[11] |
Paris: Mme Ve Courcier, 1787. Google Scholar |
[12] |
Woodridge, CT: Oxbow Press, 1979. Google Scholar |
[13] |
Proc. Cambridge Philos. Soc., 51 (1955), 406-413.
doi: 10.1017/S0305004100030401. |
[14] |
Journal of Applied Mechanics, 78 (2011), 11 pages.
doi: 10.1115/1.4002329. |
[15] |
Wiley, New York, 1974. |
[16] |
Acta Mechanica., 213 (2010), 111-129.
doi: 10.1007/s00707-009-0272-2. |
[17] |
Proceedings of the Royal Society of London A, 462 (2006), 2097-2117.
doi: 10.1098/rspa.2006.1662. |
[18] |
Proceedings of the Royal Society of London A, 439 (1992), 407-410.
doi: 10.1098/rspa.1992.0158. |
[19] |
Journal of Optimization Theory and Applications, 94 (1997), 23-28. |
[20] |
Cambridge University Press, 1996.
doi: 10.1017/CBO9780511665479. |
[21] |
ASME J. Appl. Mech., 68 (2001), 462-467.
doi: 10.1115/1.1364492. |
[22] |
Int. J. Nonlin. Mech., 37 (2002), 1079-1090.
doi: 10.1016/S0020-7462(01)00033-6. |
show all references
References:
[1] |
C. R. Acad. Sci. III, 129 (1899), 459-460. Google Scholar |
[2] |
Rend. Circ. Mat. Palermo, 32 (1911), 48-50.
doi: 10.1007/BF03014784. |
[3] |
Mir Publications, Moscow, 1989. Google Scholar |
[4] |
Oxford University Press, New York, 1999. Google Scholar |
[5] |
New York, Yeshiva University Press, 1964. Google Scholar |
[6] |
J. Reine Angew. Math., 4 (1829), 232-235.
doi: 10.1515/crll.1829.4.232. |
[7] |
Am. J. Math., 2 (1879), 49-64.
doi: 10.2307/2369196. |
[8] |
Addison-Wesley, Reading, MA, 1981. Google Scholar |
[9] |
Wadsworth and Brooks, 1983. |
[10] |
Springer-Verlag, Berlin, New York, 1949. Google Scholar |
[11] |
Paris: Mme Ve Courcier, 1787. Google Scholar |
[12] |
Woodridge, CT: Oxbow Press, 1979. Google Scholar |
[13] |
Proc. Cambridge Philos. Soc., 51 (1955), 406-413.
doi: 10.1017/S0305004100030401. |
[14] |
Journal of Applied Mechanics, 78 (2011), 11 pages.
doi: 10.1115/1.4002329. |
[15] |
Wiley, New York, 1974. |
[16] |
Acta Mechanica., 213 (2010), 111-129.
doi: 10.1007/s00707-009-0272-2. |
[17] |
Proceedings of the Royal Society of London A, 462 (2006), 2097-2117.
doi: 10.1098/rspa.2006.1662. |
[18] |
Proceedings of the Royal Society of London A, 439 (1992), 407-410.
doi: 10.1098/rspa.1992.0158. |
[19] |
Journal of Optimization Theory and Applications, 94 (1997), 23-28. |
[20] |
Cambridge University Press, 1996.
doi: 10.1017/CBO9780511665479. |
[21] |
ASME J. Appl. Mech., 68 (2001), 462-467.
doi: 10.1115/1.1364492. |
[22] |
Int. J. Nonlin. Mech., 37 (2002), 1079-1090.
doi: 10.1016/S0020-7462(01)00033-6. |
[1] |
Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527 |
[2] |
Ai-Li Yang, Yu-Jiang Wu. Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 839-853. doi: 10.3934/naco.2012.2.839 |
[3] |
Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029 |
[4] |
Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49 |
[5] |
Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155 |
[6] |
Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447 |
[7] |
Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679 |
[8] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399 |
[9] |
Asadollah Aghajani, Craig Cowan. Explicit estimates on positive supersolutions of nonlinear elliptic equations and applications. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2731-2742. doi: 10.3934/dcds.2019114 |
[10] |
Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579 |
[11] |
Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246 |
[12] |
Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073 |
[13] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009 |
[14] |
Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations & Control Theory, 2020, 9 (2) : 431-446. doi: 10.3934/eect.2020012 |
[15] |
Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51 |
[16] |
Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 |
[17] |
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431 |
[18] |
Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069 |
[19] |
Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835 |
[20] |
Delio Mugnolo. Dynamical systems associated with adjacency matrices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1945-1973. doi: 10.3934/dcdsb.2018190 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]