2013, 3(3): 425-443. doi: 10.3934/naco.2013.3.425

On general nonlinear constrained mechanical systems

1. 

Aerospace and Mechanical Engineering, Civil Engineering, Mathematics, and Information and Operations Management, University of Southern California, Los Angeles, CA 90089-1453, United States

2. 

Department of Mechanical Engineering, Mahidol University, 25/25 Puttamonthon, Nakorn Pathom 73170, Thailand

Received  September 2011 Revised  February 2013 Published  July 2013

This paper develops a new, simple, general, and explicit form of the equations of motion for general constrained mechanical systems that can have holonomic and/or nonholonomic constraints that may or may not be ideal, and that may contain either positive semi-definite or positive definite mass matrices. This is done through the replacement of the actual unconstrained mechanical system, which may have a positive semi-definite mass matrix, with an unconstrained auxiliary system whose mass matrix is positive definite and which is subjected to the same holonomic and/or nonholonomic constraints as those applied to the actual unconstrained mechanical system. A simple, unified fundamental equation that gives in closed-form both the acceleration of the constrained mechanical system and the constraint force is obtained. The results herein provide deeper insights into the behavior of constrained motion and open up new approaches to modeling complex, constrained mechanical systems, such as those encountered in multi-body dynamics.
Citation: Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425
References:
[1]

P. Appell, Sur une forme generale des equations de la dynamique,, C. R. Acad. Sci. III, 129 (1899), 459.   Google Scholar

[2]

P. Appell, Example de mouvement d'un point assujeti a une liason exprimee par une relation non lineaire entre les composantes de la vitesse,, Rend. Circ. Mat. Palermo, 32 (1911), 48.  doi: 10.1007/BF03014784.  Google Scholar

[3]

N. G. Chataev, "Theoretical Mechanics,", Mir Publications, (1989).   Google Scholar

[4]

C. T. Chen, "Linear System Theory and Design,", Oxford University Press, (1999).   Google Scholar

[5]

P. A. M. Dirac, "Lectures in Quantum Mechanics,", New York, (1964).   Google Scholar

[6]

C. Gauss, Uber ein neues allgemeines grundgesetz der mechanik,, J. Reine Angew. Math., 4 (1829), 232.  doi: 10.1515/crll.1829.4.232.  Google Scholar

[7]

W. Gibbs, On the fundamental formulae of dynamics,, Am. J. Math., 2 (1879), 49.  doi: 10.2307/2369196.  Google Scholar

[8]

H. Goldstein, "Classical Mechanics,", Addison-Wesley, (1981).   Google Scholar

[9]

F. Graybill, "Matrices with Applications in Statistics,", Wadsworth and Brooks, (1983).   Google Scholar

[10]

G. Hamel, "Theoretische Mechanik: Eine Einheitliche Einfuhrung in die Gesamte Mechanik,", Springer-Verlag, (1949).   Google Scholar

[11]

J. L. Lagrange, "Mechanique Analytique,", Paris: Mme Ve Courcier, (1787).   Google Scholar

[12]

L. A. Pars, "A Treatise on Analytical Dynamics,", Woodridge, (1979).   Google Scholar

[13]

R. Penrose, A generalized inverse of a matrices,, Proc. Cambridge Philos. Soc., 51 (1955), 406.  doi: 10.1017/S0305004100030401.  Google Scholar

[14]

A. Schutte and F. E. Udwadia, New approach to the modeling of complex multi-body dynamical systems,, Journal of Applied Mechanics, 78 (2011).  doi: 10.1115/1.4002329.  Google Scholar

[15]

E. C. G. Sudarshan and N. Mukunda, "Classical Dynamics: A Modern Perspective,", Wiley, (1974).   Google Scholar

[16]

F. E. Udwadia and A. D. Schutte, Equations of motion for general constrained systems in Lagrangian mechanics,, Acta Mechanica., 213 (2010), 111.  doi: 10.1007/s00707-009-0272-2.  Google Scholar

[17]

F. E. Udwadia and P. Phohomsiri, Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics,, Proceedings of the Royal Society of London A, 462 (2006), 2097.  doi: 10.1098/rspa.2006.1662.  Google Scholar

[18]

F. E. Udwadia and R. E. Kalaba, A new perspective on constrained motion,, Proceedings of the Royal Society of London A, 439 (1992), 407.  doi: 10.1098/rspa.1992.0158.  Google Scholar

[19]

F. E. Udwadia and R. E. Kalaba, An alternative proof for Greville's formula,, Journal of Optimization Theory and Applications, 94 (1997), 23.   Google Scholar

[20]

F. E. Udwadia and R. E. Kalaba, "Analytical Dynamics: A New Approach,", Cambridge University Press, (1996).  doi: 10.1017/CBO9780511665479.  Google Scholar

[21]

F. E. Udwadia and R. E. Kalaba, Explicit equations of motion for mechanical systems with non-ideal constraints,, ASME J. Appl. Mech., 68 (2001), 462.  doi: 10.1115/1.1364492.  Google Scholar

[22]

F. E. Udwadia and R. E. Kalaba, On the foundations of analytical dynamics,, Int. J. Nonlin. Mech., 37 (2002), 1079.  doi: 10.1016/S0020-7462(01)00033-6.  Google Scholar

show all references

References:
[1]

P. Appell, Sur une forme generale des equations de la dynamique,, C. R. Acad. Sci. III, 129 (1899), 459.   Google Scholar

[2]

P. Appell, Example de mouvement d'un point assujeti a une liason exprimee par une relation non lineaire entre les composantes de la vitesse,, Rend. Circ. Mat. Palermo, 32 (1911), 48.  doi: 10.1007/BF03014784.  Google Scholar

[3]

N. G. Chataev, "Theoretical Mechanics,", Mir Publications, (1989).   Google Scholar

[4]

C. T. Chen, "Linear System Theory and Design,", Oxford University Press, (1999).   Google Scholar

[5]

P. A. M. Dirac, "Lectures in Quantum Mechanics,", New York, (1964).   Google Scholar

[6]

C. Gauss, Uber ein neues allgemeines grundgesetz der mechanik,, J. Reine Angew. Math., 4 (1829), 232.  doi: 10.1515/crll.1829.4.232.  Google Scholar

[7]

W. Gibbs, On the fundamental formulae of dynamics,, Am. J. Math., 2 (1879), 49.  doi: 10.2307/2369196.  Google Scholar

[8]

H. Goldstein, "Classical Mechanics,", Addison-Wesley, (1981).   Google Scholar

[9]

F. Graybill, "Matrices with Applications in Statistics,", Wadsworth and Brooks, (1983).   Google Scholar

[10]

G. Hamel, "Theoretische Mechanik: Eine Einheitliche Einfuhrung in die Gesamte Mechanik,", Springer-Verlag, (1949).   Google Scholar

[11]

J. L. Lagrange, "Mechanique Analytique,", Paris: Mme Ve Courcier, (1787).   Google Scholar

[12]

L. A. Pars, "A Treatise on Analytical Dynamics,", Woodridge, (1979).   Google Scholar

[13]

R. Penrose, A generalized inverse of a matrices,, Proc. Cambridge Philos. Soc., 51 (1955), 406.  doi: 10.1017/S0305004100030401.  Google Scholar

[14]

A. Schutte and F. E. Udwadia, New approach to the modeling of complex multi-body dynamical systems,, Journal of Applied Mechanics, 78 (2011).  doi: 10.1115/1.4002329.  Google Scholar

[15]

E. C. G. Sudarshan and N. Mukunda, "Classical Dynamics: A Modern Perspective,", Wiley, (1974).   Google Scholar

[16]

F. E. Udwadia and A. D. Schutte, Equations of motion for general constrained systems in Lagrangian mechanics,, Acta Mechanica., 213 (2010), 111.  doi: 10.1007/s00707-009-0272-2.  Google Scholar

[17]

F. E. Udwadia and P. Phohomsiri, Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics,, Proceedings of the Royal Society of London A, 462 (2006), 2097.  doi: 10.1098/rspa.2006.1662.  Google Scholar

[18]

F. E. Udwadia and R. E. Kalaba, A new perspective on constrained motion,, Proceedings of the Royal Society of London A, 439 (1992), 407.  doi: 10.1098/rspa.1992.0158.  Google Scholar

[19]

F. E. Udwadia and R. E. Kalaba, An alternative proof for Greville's formula,, Journal of Optimization Theory and Applications, 94 (1997), 23.   Google Scholar

[20]

F. E. Udwadia and R. E. Kalaba, "Analytical Dynamics: A New Approach,", Cambridge University Press, (1996).  doi: 10.1017/CBO9780511665479.  Google Scholar

[21]

F. E. Udwadia and R. E. Kalaba, Explicit equations of motion for mechanical systems with non-ideal constraints,, ASME J. Appl. Mech., 68 (2001), 462.  doi: 10.1115/1.1364492.  Google Scholar

[22]

F. E. Udwadia and R. E. Kalaba, On the foundations of analytical dynamics,, Int. J. Nonlin. Mech., 37 (2002), 1079.  doi: 10.1016/S0020-7462(01)00033-6.  Google Scholar

[1]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[2]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[5]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[8]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[9]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277

[10]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[11]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[12]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[13]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[14]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[15]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[19]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[20]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

 Impact Factor: 

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]