-
Previous Article
Introduction to the theory of splines with an optimal mesh. Linear Chebyshev splines and applications
- NACO Home
- This Issue
-
Next Article
Direct model reference adaptive control of linear systems with input/output delays
Partial Newton methods for a system of equations
1. | Curtin Sarawak Research Institute, Curtin University Sarawak, 98009 Miri, Sarawak, Malaysia |
2. | Department of Mathematics, University Putra Malaysia, 43400 Serdang, Malaysia |
3. | Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia |
References:
[1] |
B. S. Goh, Greatest descent algorithms in unconstrained optimization, J. Optim. Theory Appl., 142 (2009), 275-289.
doi: 10.1007/s10957-009-9533-4. |
[2] |
B. S. Goh, Convergence of algorithms in optimization and solutions of nonlinear equations, J. Optim. Theory Appl., 144 (2010), 43-55.
doi: 10.1007/s10957-009-9583-7. |
[3] |
C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations," SIAM Publication, Philadelphia, 1995.
doi: 10.1137/1.9781611970944. |
[4] |
J. P. LaSalle, "The Stability of Dynamical Systems," SIAM Publication, Philadelphia, 1976.
doi: 10.1137/1.9781611970432. |
show all references
References:
[1] |
B. S. Goh, Greatest descent algorithms in unconstrained optimization, J. Optim. Theory Appl., 142 (2009), 275-289.
doi: 10.1007/s10957-009-9533-4. |
[2] |
B. S. Goh, Convergence of algorithms in optimization and solutions of nonlinear equations, J. Optim. Theory Appl., 144 (2010), 43-55.
doi: 10.1007/s10957-009-9583-7. |
[3] |
C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations," SIAM Publication, Philadelphia, 1995.
doi: 10.1137/1.9781611970944. |
[4] |
J. P. LaSalle, "The Stability of Dynamical Systems," SIAM Publication, Philadelphia, 1976.
doi: 10.1137/1.9781611970432. |
[1] |
Saeed Ketabchi, Hossein Moosaei, M. Parandegan, Hamidreza Navidi. Computing minimum norm solution of linear systems of equations by the generalized Newton method. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 113-119. doi: 10.3934/naco.2017008 |
[2] |
Xiaojiao Tong, Shuzi Zhou. A smoothing projected Newton-type method for semismooth equations with bound constraints. Journal of Industrial and Management Optimization, 2005, 1 (2) : 235-250. doi: 10.3934/jimo.2005.1.235 |
[3] |
Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semi-local convergence of the Newton-HSS method under the center Lipschitz condition. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 85-99. doi: 10.3934/naco.2019007 |
[4] |
T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201 |
[5] |
Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial and Management Optimization, 2007, 3 (3) : 553-567. doi: 10.3934/jimo.2007.3.553 |
[6] |
Zhi-Feng Pang, Yu-Fei Yang. Semismooth Newton method for minimization of the LLT model. Inverse Problems and Imaging, 2009, 3 (4) : 677-691. doi: 10.3934/ipi.2009.3.677 |
[7] |
Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial and Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003 |
[8] |
Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237-248. doi: 10.3934/mbe.2017015 |
[9] |
Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237 |
[10] |
R. Baier, M. Dellnitz, M. Hessel-von Molo, S. Sertl, I. G. Kevrekidis. The computation of convex invariant sets via Newton's method. Journal of Computational Dynamics, 2014, 1 (1) : 39-69. doi: 10.3934/jcd.2014.1.39 |
[11] |
Hans J. Wolters. A Newton-type method for computing best segment approximations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 133-149 . doi: 10.3934/cpaa.2004.3.133 |
[12] |
Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143 |
[13] |
Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial and Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733 |
[14] |
Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 677-685. doi: 10.3934/naco.2021012 |
[15] |
Cheng-Dar Liou. Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method". Journal of Industrial and Management Optimization, 2012, 8 (3) : 727-732. doi: 10.3934/jimo.2012.8.727 |
[16] |
Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems and Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353 |
[17] |
Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial and Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247 |
[18] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1 |
[19] |
Andy M. Yip, Wei Zhu. A fast modified Newton's method for curvature based denoising of 1D signals. Inverse Problems and Imaging, 2013, 7 (3) : 1075-1097. doi: 10.3934/ipi.2013.7.1075 |
[20] |
Kuo-Hsiung Wang, Chuen-Wen Liao, Tseng-Chang Yen. Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method. Journal of Industrial and Management Optimization, 2010, 6 (1) : 197-207. doi: 10.3934/jimo.2010.6.197 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]