\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Deflating irreducible singular M-matrix algebraic Riccati equations

Abstract Related Papers Cited by
  • A deflation technique is presented for an irreducible singular $M$-matrix Algebraic Riccati Equation (MARE). The technique improves the rate of convergence of a doubling algorithm, especially for an MARE in the critical case for which without deflation the doubling algorithm converges linearly and with deflation it converges quadratically. The deflation also improves the conditioning of the MARE in the critical case and thus enables its minimal nonnegative solution to be computed more accurately.
    Mathematics Subject Classification: Primary: 15A24, 65F30; Secondary: 65H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. D. O. Anderson, Second-order convergent algorithms for the steady-state Riccati equation, Internat. J. Control, 28 (1978), 295-306.doi: 10.1080/00207177808922455.

    [2]

    N. G. Bean, M. M. O'Reilly and P. G. Taylor, Algorithms for return probabilities for stochastic fluid flows, Stoch. Models, 21 (2005), 149-184.doi: 10.1081/STM-200046511.

    [3]

    A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences," SIAM, Philadelphia, 1994. ( This SIAM edition is a corrected reproduction of the work first published in 1979 by Academic Press, San Diego, CA.)

    [4]

    D. A. Bini, B. Meini and F. Poloni, Transforming algebraic Riccati equations into unilateral quadratic matrix equations, Numer. Math., 116 (2010), 553-578.doi: 10.1007/s00211-010-0319-2.

    [5]

    C.-Y. Chiang, E. K.-W. Chu, C.-H. Guo, T.-M. Huang, W.-W. Lin and S.-F. Xu, Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case, SIAM J. Matrix Anal. Appl., 31 (2009), 227-247.doi: 10.1137/080717304.

    [6]

    E. K.-W. Chu, H.-Y. Fan and W.-W. Lin, A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations, Linear Algebra Appl., 396 (2005), 55-80.doi: 10.1016/j.laa.2004.10.010.

    [7]

    E. K. W. Chu, H.-Y. Fan, W. W. Lin and C. S. Wang, Structure-preserving algorithms for periodic discrete-time algebraic Riccati equations., Internat. J. Control, 77 (2004), 767-788.doi: 10.1080/00207170410001714988.

    [8]

    J. Demmel, "Applied Numerical Linear Algebra," SIAM, Philadelphia, PA, 1997.doi: 10.1137/1.9781611971446.

    [9]

    M. Fiedler, "Special Matrices and Their Applications in Numerical Mathematics," Dover Publications, Inc., Mineola, New York, 2nd ed., 2008.

    [10]

    C.-H. Guo, Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices, SIAM J. Matrix Anal. Appl., 23 (2001), 225-242.doi: 10.1137/S0895479800375680.

    [11]

    C.-H. Guo, A new class of nonsymmetric algebraic Riccati equations, Linear Algebra Appl., 426 (2007), 636-649.doi: 10.1016/j.laa.2007.05.044.

    [12]

    C.-H. Guo and N. Higham, Iterative solution of a nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl., 29 (2007), 396-412.doi: 10.1137/050647669.

    [13]

    C.-H. Guo, B. Iannazzo and B. Meini, On the doubling algorithm for a (shifted) nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl., 29 (2007), 1083-1100.doi: 10.1137/060660837.

    [14]

    C.-H. Guo and A. J. Laub, On the iterative solution of a class of nonsymmetric algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 22 (2000), 376-391.doi: 10.1137/S089547989834980X.

    [15]

    X. Guo, W. Lin and S. Xu, A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation, Numer. Math., 103 (2006), 393-412.doi: 10.1007/s00211-005-0673-7.

    [16]

    J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl., 230 (1995), 89-100.doi: 10.1016/0024-3795(93)00366-8.

    [17]

    J. Juang and W.-W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl., 20 (1998), 228-243.doi: 10.1137/S0895479897318253.

    [18]

    P. Lancaster and L. Rodman, "Algebraic Riccati Equations," Oxford University Press, New York, USA, 1995.

    [19]

    V. Ramaswami, Matrix analytic methods for stochastic fluid flows, Proceedings of the 16th International Teletraffic Congress, Edinburg, 1999, Elsevier Science, 19-30.

    [20]

    L. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains, Ann. Appl. Probab., 4 (1994), 390-413.doi: 10.1214/aoap/1177005065.

    [21]

    W.-G. Wang, W.-C. Wang and R.-C. Li, Deflating irreducible singular M-matrix algebraic riccati equations, Technical Report 2011-20, Department of Mathematics, University of Texas at Arlington, September 2011.

    [22]

    W.-G. Wang, W.-C. Wang and R.-C. Li, Alternating-directional doubling algorithm for M-matrix algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 33 (2012), 170-194.doi: 10.1137/110835463.

    [23]

    J. Xue, S. Xu and R.-C. Li, Accurate solutions of M-matrix algebraic Riccati equations, Numer. Math., 120 (2012), 671-700.doi: 10.1007/s00211-011-0421-0.

    [24]

    J. Xue, S. Xu and R.-C. Li, Accurate solutions of M-matrix Sylvester equations, Numer. Math., 120 (2012), 639-670.doi: 10.1007/s00211-011-0420-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(58) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return