\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function

Abstract / Introduction Related Papers Cited by
  • We present a full Nesterov-Todd step infeasible interior-point algorithm based on a kernel function. Each main iteration of the algorithm consists of a feasibility step and some centering steps. We introduce a kernel function in the algorithm to induce the feasibility step. The iteration bound coincides with the best iteration bound for infeasible interior-point methods, that is, $O(r\log\frac{r}{\epsilon})$, where $r$ is the rank of Euclidean Jordan algebra.
    Mathematics Subject Classification: Primary: 90C33, Secondary: 90C51.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Faraut and A. Korányi, "Analysis on Symmetric Cones," Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1994.

    [2]

    L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. Appl. Math., 86 (1997), 149-175.doi: 10.1016/S0377-0427(97)00153-2.

    [3]

    L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Mathematicsche Zeitschrift, 239 (2002), 117-129.doi: 10.1007/s002090100286.

    [4]

    G. Gu, M. Zangiabadi and C. Roos, Full Nesterov-Todd step infeasible interior-point method for symmetric optimization, European J. Oper. Res., 214 (2011), 473-484.doi: 10.1016/j.ejor.2011.02.022.

    [5]

    B. Kheirfam, A full NT-step infeasible interior-point algorithm for semidefinite optimization based on a self-regular proximity, ANZIAM J., 53 (2011), 48-67.doi: 10.1017/S144618111200003X.

    [6]

    B. Kheirfam, Simplified infeasible interior-point algorithm for SDO using full Nesterov-Todd step, Numer. Algorithms, 59 (2012), 589-606.doi: 10.1007/s11075-011-9506-1.

    [7]

    Z. Liu and W. Sun, A full-NT-step infeasible interior-point algorithm for SDP based on kernel functions, Appl. Math. Comput., 27 (2011), 4990-4999.doi: 10.1016/j.amc.2010.11.049.

    [8]

    Z. Liu, W. Sun and F. Tian, A full-Newton step infeasible interior-point algorithm for linear programming based on a kernel function, Appl. Math. Optim., 60 (2009), 237-251.doi: 10.1007/s00245-009-9069-x.

    [9]

    R. D. C. Monteiro and Y. Zhang, A unified analysis for a class of path-following primal-dual interior-point algorithms for semidefinite programming, Math. Program., 8 (1998), 281-299.doi: 10.1007/BF01580085.

    [10]

    Y. E. Nesterov and A. S. Nemirovskii, "Interior Point Polynomial Algorithms in Convex Programming," SIAM Stud. Appl. Math., SIAM, Philadelphia, 13 (1994).doi: 10.1137/1.9781611970791.

    [11]

    Y. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming, Math. Oper. Res., 22 (1997), 1-42.doi: 10.1287/moor.22.1.1.

    [12]

    J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Math. Program., 93 (2002), 129-171.doi: 10.1007/s101070200296.

    [13]

    B. K. Rangarajan, Polynomial convergence of infeasible interior-point methods over symmetric cones, SIAM J. Optim., 16 (2006), 1211-1229.doi: 10.1137/040606557.

    [14]

    C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim., 16 (2006), 1110-1136.doi: 10.1137/050623917.

    [15]

    S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior-point algorithm to symmetric cones, Math. Program., 96 (2003), 409-438.doi: 10.1007/s10107-003-0380-z.

    [16]

    J. F. Sturm, Similarity and other spectral relations for symmetric cones, Algebra Appl., 312 (2000), 135-154.doi: 10.1016/S0024-3795(00)00096-3.

    [17]

    T. Tsuchiya, A convergence analysis of the scaling- invariant primal-dual path-following algorithms for second-order cone programming, Optim. Methods Sofw., 11-12 (1999), 141-182.doi: 10.1080/10556789908805750.

    [18]

    M. V. C. Vieira, "Jordan Algebraic Approach to Symmetric Optimization," Ph.D thesis, Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return