-
Previous Article
Error bounds for symmetric cone complementarity problems
- NACO Home
- This Issue
-
Next Article
A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function
Some properties of a class of $(F,E)$-$G$ generalized convex functions
1. | Department of Mathematics, Chongqing Normal University, Chongqing 400047, China |
References:
[1] |
T. Antczak, (p,r)-invex sets and functions,, J. Math. Anal. Appl., 263 (2001), 355.
doi: 10.1006/jmaa.2001.7574. |
[2] |
M. Avriel, r-convex functions,, Math. Programming, 2 (1972), 309.
|
[3] |
A. Ben-Israel and B. Mond, What is invexity? , J. Aust. Math. Soc. Ser. B., 28 (1986), 1.
doi: 10.1017/S0334270000005142. |
[4] |
X. Chen, Some properties of semi-E-convex functions,, J. Math. Anal. Appl., 275 (2002), 251.
doi: 10.1016/S0022-247X(02)00325-6. |
[5] |
C. Fulga and V. Preda, Nonlinear programming with E-preinvex and local E-preinvex functions,, European J.Oper.Res., 192 (2009), 737.
doi: 10.1016/j.ejor.2007.11.056. |
[6] |
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions,, J. Math. Anal. Appl., 80 (1981), 545.
doi: 10.1016/0022-247X(81)90123-2. |
[7] |
J. Y. Huang, Y. Zhao, D. Li and Y. J. Li, F-G generalized convex functions and semicontinuous functions,, Journal of Hangzhou Normal University(Natural Science), 10 (2011), 223. Google Scholar |
[8] |
J. Y. Huang, Y. Zhao, and Y. N. Fang, The F-G generalized convex functions and F quasi convex functions,, Journal of Chongqing Normal University(Natural Science), 28 (2011), 1. Google Scholar |
[9] |
S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions,, J. Math. Anal. Appl., 189 (1995), 901.
doi: 10.1006/jmaa.1995.1057. |
[10] |
R. Pini, Invexity and generalized convexity,, Optimization, 22 (1999), 513.
doi: 10.1080/02331939108843693. |
[11] |
T. Weir and B. Mond, Preinvex functions in multiple objective optimization,, J. Math. Anal. Appl., 136 (1988), 29.
doi: 10.1016/0022-247X(88)90113-8. |
[12] |
X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions,, J. Optim. Theory Appl., 100 (2001), 645.
doi: 10.1023/A:1017544513305. |
[13] |
E. A. Youness, E-convex sets, E-convex functions and E-convex programming,, J. Optim. Theory Appl., 102 (1999), 439.
doi: 10.1023/A:1021792726715. |
[14] |
Y. Zhao and J. Y. Huang, Semi-strictly F-G generalized convex functions,, Journal of Chongqing Normal University(Natural Science), 28 (2011), 7. Google Scholar |
[15] |
Y. Zhao, J. Y. Huang and C. Y. Li, Strictly F-G generalized convex functions,, Journal of Hangzhou Normal University(Natural Science), 10 (2011), 20. Google Scholar |
show all references
References:
[1] |
T. Antczak, (p,r)-invex sets and functions,, J. Math. Anal. Appl., 263 (2001), 355.
doi: 10.1006/jmaa.2001.7574. |
[2] |
M. Avriel, r-convex functions,, Math. Programming, 2 (1972), 309.
|
[3] |
A. Ben-Israel and B. Mond, What is invexity? , J. Aust. Math. Soc. Ser. B., 28 (1986), 1.
doi: 10.1017/S0334270000005142. |
[4] |
X. Chen, Some properties of semi-E-convex functions,, J. Math. Anal. Appl., 275 (2002), 251.
doi: 10.1016/S0022-247X(02)00325-6. |
[5] |
C. Fulga and V. Preda, Nonlinear programming with E-preinvex and local E-preinvex functions,, European J.Oper.Res., 192 (2009), 737.
doi: 10.1016/j.ejor.2007.11.056. |
[6] |
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions,, J. Math. Anal. Appl., 80 (1981), 545.
doi: 10.1016/0022-247X(81)90123-2. |
[7] |
J. Y. Huang, Y. Zhao, D. Li and Y. J. Li, F-G generalized convex functions and semicontinuous functions,, Journal of Hangzhou Normal University(Natural Science), 10 (2011), 223. Google Scholar |
[8] |
J. Y. Huang, Y. Zhao, and Y. N. Fang, The F-G generalized convex functions and F quasi convex functions,, Journal of Chongqing Normal University(Natural Science), 28 (2011), 1. Google Scholar |
[9] |
S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions,, J. Math. Anal. Appl., 189 (1995), 901.
doi: 10.1006/jmaa.1995.1057. |
[10] |
R. Pini, Invexity and generalized convexity,, Optimization, 22 (1999), 513.
doi: 10.1080/02331939108843693. |
[11] |
T. Weir and B. Mond, Preinvex functions in multiple objective optimization,, J. Math. Anal. Appl., 136 (1988), 29.
doi: 10.1016/0022-247X(88)90113-8. |
[12] |
X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions,, J. Optim. Theory Appl., 100 (2001), 645.
doi: 10.1023/A:1017544513305. |
[13] |
E. A. Youness, E-convex sets, E-convex functions and E-convex programming,, J. Optim. Theory Appl., 102 (1999), 439.
doi: 10.1023/A:1021792726715. |
[14] |
Y. Zhao and J. Y. Huang, Semi-strictly F-G generalized convex functions,, Journal of Chongqing Normal University(Natural Science), 28 (2011), 7. Google Scholar |
[15] |
Y. Zhao, J. Y. Huang and C. Y. Li, Strictly F-G generalized convex functions,, Journal of Hangzhou Normal University(Natural Science), 10 (2011), 20. Google Scholar |
[1] |
Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445-461. doi: 10.3934/mbe.2011.8.445 |
[2] |
Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127 |
[3] |
Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243 |
[4] |
Xiuhong Chen, Zhihua Li. On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity. Journal of Industrial & Management Optimization, 2018, 14 (3) : 895-912. doi: 10.3934/jimo.2017081 |
[5] |
Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557 |
[6] |
Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415 |
[7] |
Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671 |
[8] |
David Keyes. $\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity. Advances in Mathematics of Communications, 2012, 6 (4) : 401-418. doi: 10.3934/amc.2012.6.401 |
[9] |
Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447 |
[10] |
Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31 |
[11] |
Fan Jiang, Zhongming Wu, Xingju Cai. Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018181 |
[12] |
Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437 |
[13] |
Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial & Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004 |
[14] |
Khalida Inayat Noor, Muhammad Aslam Noor. Higher order uniformly close-to-convex functions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1277-1290. doi: 10.3934/dcdss.2015.8.1277 |
[15] |
Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070 |
[16] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[17] |
Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685 |
[18] |
William E. Fitzgibbon. The work of Glenn F. Webb. Mathematical Biosciences & Engineering, 2015, 12 (4) : v-xvi. doi: 10.3934/mbe.2015.12.4v |
[19] |
Jiao Du, Longjiang Qu, Chao Li, Xin Liao. Constructing 1-resilient rotation symmetric functions over $ {\mathbb F}_{p} $ with $ {q} $ variables through special orthogonal arrays. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020018 |
[20] |
Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]