\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some properties of a class of $(F,E)$-$G$ generalized convex functions

Abstract Related Papers Cited by
  • In this paper, firstly, a new class of $(F,E)$-$G$ generalized convex functions, which is the generalization of $F$-$G$ generalized convex functions, is introduced. Secondly, some properties of $(F,E)$-$G$ generalized convex functions are obtained. Finally, some relations between $(F,E)$-$G$ generalized convex functions and other generalizations of convex functions are established.
    Mathematics Subject Classification: Primary: 90C26; Secondary: 90C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Antczak, (p,r)-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.doi: 10.1006/jmaa.2001.7574.

    [2]

    M. Avriel, r-convex functions, Math. Programming, 2 (1972), 309-323.

    [3]

    A. Ben-Israel and B. Mond, What is invexity? J. Aust. Math. Soc. Ser. B., 28 (1986), 1-9.doi: 10.1017/S0334270000005142.

    [4]

    X. Chen, Some properties of semi-E-convex functions, J. Math. Anal. Appl., 275 (2002), 251-262.doi: 10.1016/S0022-247X(02)00325-6.

    [5]

    C. Fulga and V. Preda, Nonlinear programming with E-preinvex and local E-preinvex functions, European J.Oper.Res., 192 (2009), 737-743.doi: 10.1016/j.ejor.2007.11.056.

    [6]

    M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.doi: 10.1016/0022-247X(81)90123-2.

    [7]

    J. Y. Huang, Y. Zhao, D. Li and Y. J. Li, F-G generalized convex functions and semicontinuous functions, Journal of Hangzhou Normal University(Natural Science), 10 (2011), 223-247.

    [8]

    J. Y. Huang, Y. Zhao, and Y. N. Fang, The F-G generalized convex functions and F quasi convex functions, Journal of Chongqing Normal University(Natural Science), 28 (2011), 1-5.

    [9]

    S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901-908.doi: 10.1006/jmaa.1995.1057.

    [10]

    R. Pini, Invexity and generalized convexity, Optimization, 22 (1999), 513-525.doi: 10.1080/02331939108843693.

    [11]

    T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29-38.doi: 10.1016/0022-247X(88)90113-8.

    [12]

    X. M. Yang, X. Q. Yang and K. L. Teo, Characterizations and applications of prequasi-invex functions, J. Optim. Theory Appl., 100 (2001), 645-668.doi: 10.1023/A:1017544513305.

    [13]

    E. A. Youness, E-convex sets, E-convex functions and E-convex programming, J. Optim. Theory Appl., 102 (1999), 439-450.doi: 10.1023/A:1021792726715.

    [14]

    Y. Zhao and J. Y. Huang, Semi-strictly F-G generalized convex functions, Journal of Chongqing Normal University(Natural Science), 28 (2011), 7-12.

    [15]

    Y. Zhao, J. Y. Huang and C. Y. Li, Strictly F-G generalized convex functions, Journal of Hangzhou Normal University(Natural Science), 10 (2011), 20-26.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return