Citation: |
[1] |
S.-J. Bi, S.-H. Pan and J.-S. Chen, The same growth of FB and NR symmetric cone complementarity functions, Optimization Letters, 6 (2012), 153-162. |
[2] |
B. Chen, Error bounds for R0-type and monotone nonlinear complementarity problems, Journal of Optimization Theorey and Applications, 108 (2001), 297-316.doi: 10.1023/A:1026434200384. |
[3] |
J.-S. Chen, Conditions for error bounds and bounded Level sets of some merit functions for the second-order cone complementarity problem, Journal of Optimization Theory and Applications, 135 (2007), 459-473.doi: 10.1007/s10957-007-9279-9. |
[4] |
B. Chen and P. T. Harker, Smoothing Approximations to nonlinear complementarity problems, SIAM Journal on Optimization, 7 (1997), 403-420.doi: 10.1137/S1052623495280615. |
[5] |
X. Chen and S. Xiang, Computation of error bounds for P-matrix linear complementarity problems, Mathematical Programming, Series A, 106 (2006), 513-525.doi: 10.1007/s10107-005-0645-9. |
[6] |
J. Faraut and A. Korányi, "Analysis on Symmetric Cones," Oxford Mathematical Monographs Oxford University Press, New York, 1994. |
[7] |
F. Facchinei and J. S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems," Volume I, New York, Springer, 2003. |
[8] |
M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Mathematical Programming, 53 (1992), 99-110.doi: 10.1007/BF01585696. |
[9] |
M. S. Gowda, R. Sznajder and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra Appl., 393 (2004), 203-232.doi: 10.1016/j.laa.2004.03.028. |
[10] |
Z. H. Huang, S. L. Hu and J. Y. Han, Convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search, Science China Mathematics, 52 (2009), 833-848.doi: 10.1007/s11425-008-0170-4. |
[11] |
Z. H. Huang and T. Ni, Smoothing algorithms for complementarity problems over symmetric cones, Comprtational Optimization and Applications, 45 (2010), 557-579.doi: 10.1007/s10589-008-9180-y. |
[12] |
C. Kanzow and M. Fukushima, Equivalence of the generalized complementarity problem to differentiable unconstrained minimization, Journal of Optimization Theory and Applications, 90 (1996), 581-603.doi: 10.1007/BF02189797. |
[13] |
L. C. Kong, J. Sun and N. H. Xiu, A regularized smoothing Newton method for symmetric cone complementarity problems, SIAM Journal on Optimization, 19 (2008), 1028-1047.doi: 10.1137/060676775. |
[14] |
L. C. Kong, L. Tuncel and N. H. Xiu, Vector-valued implicit Lagrangian for symmetric cone complementarity problems, Asia-Pacific Journal of Operational Research, 26 (2009), 199-233.doi: 10.1142/S0217595909002171. |
[15] |
Z. Q. Luo, O. L. Mangasarian, J. Ren and M. V. Solodov, New error bounds for the linear complementarity problem, Mathematics of Operations Research, 19 (1994), 880-892.doi: 10.1287/moor.19.4.880. |
[16] |
Z. Q. Luo and P. Tseng, Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem, SIAM Journal on Optimization, 2 (1992), 43-54.doi: 10.1137/0802004. |
[17] |
Y. J. Liu, Z. W. Zhang and Y. H. Wang, Some properties of a class of merit functions for symmetric cone complementarity problems, Asia Pacific Journal of Operational Research, 23 (2006), 473-495.doi: 10.1142/S0217595906000991. |
[18] |
R. Mathias and J. S. Pang, Error bounds for the linear complementarity problem with a P-Matrix, Linear Algebra and Applications, 36 (1986), 81-89. |
[19] |
O. L. Mangasarian and J. Ren, New improved error bounds for the linear complementarity problem, Mathematical Programming, 66 (1994), 241-255.doi: 10.1007/BF01581148. |
[20] |
O. L. Mangasarian and T.-H. Shiau, Error bounds for monotone linear complementarity problems, Mathematical Programming, 36 (1986), 81-89.doi: 10.1007/BF02591991. |
[21] |
J. S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM Journal on Optimization, 3 (1993), 443-465.doi: 10.1137/0803021. |
[22] |
S.-H. Pan and J.-S. Chen, A one-parametric class of merit functions for the symmetric cone complementarity problem, Journal of Mathematical Analysis and Applications, 355 (2009), 195-215.doi: 10.1016/j.jmaa.2009.01.064. |
[23] |
J. M. Peng, Equivalence of variational inequality problems to unconstrained minimization, Mathematical Programming, 78 (1997), 347-355.doi: 10.1016/S0025-5610(96)00077-9. |
[24] |
D. Sun and J. Sun, Löwner's operator and spectral functions on Euclidean Jordan algebras, Mathematics of Operations Research, 33 (2008), 421-445.doi: 10.1287/moor.1070.0300. |
[25] |
P. Tseng, Growth behavior of a class of merit functions for the nonlinear complementarity problems, Journal of Optimization Theory and Applications, 89 (1996), 17-37.doi: 10.1007/BF02192639. |
[26] |
J. Tao and M. S. Gowda, Some P-properties for nonlinear transformations on Euclidean Jordan algebras, Mathematics of Operations Research, 30 (2005), 985-1004.doi: 10.1287/moor.1050.0157. |