2013, 3(1): 63-76. doi: 10.3934/naco.2013.3.63

Instability and growth due to adjustment costs

1. 

University of Vienna, Brünnerstr. 72, 1210 Vienna, Austria, Austria

Received  September 2011 Revised  November 2012 Published  January 2013

This paper provides a new and surprising reason for growth, namely costs. More precisely, adding adjustment costs of the control to a one-dimensional, strictly concave optimal control problem does not affect the steady state(s). Then, sufficiently high adjustment costs turn an interior and saddle-point stable steady state of the original, one-state variable model into a source that can lead to unbounded growth. Given a version of the open economy Ramsey model, the initial conditions determine whether unbounded growth or impoverishment results. Related to this threshold property, the strict concave two-state variable control model allows for thresholds even if it has a unique and stable steady state.
Citation: Franz Wirl, Andreas J. Novak. Instability and growth due to adjustment costs. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 63-76. doi: 10.3934/naco.2013.3.63
References:
[1]

R. J. Barro and X. Sala-i-Martin, "Economic Growth,", Mc Graw Hill, (1995).   Google Scholar

[2]

J. Benhabib and K. Nishimura, The Hopf bifurcation and the existence and stability of closed orbits in multi-sector models of economic growth,, Journal of Economic Theory, 21 (1979), 421.  doi: 10.1016/0022-0531(79)90050-4.  Google Scholar

[3]

E. Dockner, Local stability analysis in optimal control problems with two state variables,, in, 2 (1985), 89.   Google Scholar

[4]

R. A. Easterlin, Income and happiness: towards a unified theory,, Economic Journal, 111 (2001), 465.  doi: 10.1111/1468-0297.00646.  Google Scholar

[5]

G. Feichtinger, A.J. Novak and F. Wirl, Limit cycles in intertemporal adjustment models - theory and applications,, Journal of Economic Dynamics and Control, 18 (1994), 353.  doi: 10.1016/0165-1889(94)90013-2.  Google Scholar

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields,", (second printing), (1986).   Google Scholar

[7]

F. X. Hof and F. Wirl, Wealth induced multiple equilibria in small open economy versions of the Ramsey model,, Homo Oeconomicus, 25 (2008), 1.   Google Scholar

[8]

A. Khibnik, I. Yu, A. Kuznetsov, V. V. Levitin and E. V. Nikolaev, "Interactive Local Bifurcation Analyzer, Manual,", Amsterdam, (1992).   Google Scholar

[9]

M. Kurz, Optimal economic growth and wealth effects,, International Economic Review, 9 (1968), 348.  doi: 10.2307/2556231.  Google Scholar

[10]

R. E. Lucas Jr., On the mechanics of economic development,, Journal of Monetary Economics, 22 (1988), 3.  doi: 10.1016/0304-3932(88)90168-7.  Google Scholar

[11]

S. Rebelo, Long run policy analysis and long-run growth,, Journal of Political Economy, 99 (1991), 500.  doi: 10.1086/261764.  Google Scholar

[12]

P. Romer, Increasing returns and long-run growth,, Journal of Political Economy, 94 (1986), 1002.  doi: 10.1086/261420.  Google Scholar

[13]

P. Romer, Endogenous technical change,, Journal of Political Economy, 98 (1990), 71.  doi: 10.1086/261725.  Google Scholar

[14]

F. Wirl and G. Feichtinger, History dependence in concave economies,, Journal of Economic Behavior and Organization, 57 (2005), 390.  doi: 10.1016/j.jebo.2005.04.009.  Google Scholar

[15]

F. Wirl, A. J. Novak and F. X. Hof, Happiness due to consumption and its increases, wealth and status,, Studies in Nonlinear Dynamics and Econometrics, 12 (2008).   Google Scholar

show all references

References:
[1]

R. J. Barro and X. Sala-i-Martin, "Economic Growth,", Mc Graw Hill, (1995).   Google Scholar

[2]

J. Benhabib and K. Nishimura, The Hopf bifurcation and the existence and stability of closed orbits in multi-sector models of economic growth,, Journal of Economic Theory, 21 (1979), 421.  doi: 10.1016/0022-0531(79)90050-4.  Google Scholar

[3]

E. Dockner, Local stability analysis in optimal control problems with two state variables,, in, 2 (1985), 89.   Google Scholar

[4]

R. A. Easterlin, Income and happiness: towards a unified theory,, Economic Journal, 111 (2001), 465.  doi: 10.1111/1468-0297.00646.  Google Scholar

[5]

G. Feichtinger, A.J. Novak and F. Wirl, Limit cycles in intertemporal adjustment models - theory and applications,, Journal of Economic Dynamics and Control, 18 (1994), 353.  doi: 10.1016/0165-1889(94)90013-2.  Google Scholar

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields,", (second printing), (1986).   Google Scholar

[7]

F. X. Hof and F. Wirl, Wealth induced multiple equilibria in small open economy versions of the Ramsey model,, Homo Oeconomicus, 25 (2008), 1.   Google Scholar

[8]

A. Khibnik, I. Yu, A. Kuznetsov, V. V. Levitin and E. V. Nikolaev, "Interactive Local Bifurcation Analyzer, Manual,", Amsterdam, (1992).   Google Scholar

[9]

M. Kurz, Optimal economic growth and wealth effects,, International Economic Review, 9 (1968), 348.  doi: 10.2307/2556231.  Google Scholar

[10]

R. E. Lucas Jr., On the mechanics of economic development,, Journal of Monetary Economics, 22 (1988), 3.  doi: 10.1016/0304-3932(88)90168-7.  Google Scholar

[11]

S. Rebelo, Long run policy analysis and long-run growth,, Journal of Political Economy, 99 (1991), 500.  doi: 10.1086/261764.  Google Scholar

[12]

P. Romer, Increasing returns and long-run growth,, Journal of Political Economy, 94 (1986), 1002.  doi: 10.1086/261420.  Google Scholar

[13]

P. Romer, Endogenous technical change,, Journal of Political Economy, 98 (1990), 71.  doi: 10.1086/261725.  Google Scholar

[14]

F. Wirl and G. Feichtinger, History dependence in concave economies,, Journal of Economic Behavior and Organization, 57 (2005), 390.  doi: 10.1016/j.jebo.2005.04.009.  Google Scholar

[15]

F. Wirl, A. J. Novak and F. X. Hof, Happiness due to consumption and its increases, wealth and status,, Studies in Nonlinear Dynamics and Econometrics, 12 (2008).   Google Scholar

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[4]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[9]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[10]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[11]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[12]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[13]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[16]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[17]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[18]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[19]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]