\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characterizations of the $E$-Benson proper efficiency in vector optimization problems

Abstract Related Papers Cited by
  • In this paper, under the nearly $E$-subconvexlikeness, some characterizations of the $E$-Benson proper efficiency are established in terms of scalarization, Lagrange multipliers, saddle point criteria and duality for a vector optimization problem with set-valued maps. Our main results generalize and unify some previously known results.
    Mathematics Subject Classification: Primary: 49N15; Secondary: 90C26, 90C29, 90C46.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones, J. Math. Anal. Appl., 71 (1979), 232-241.doi: 10.1016/0022-247X(79)90226-9.

    [2]

    J. Borwein, Proper efficient points for maximizations with respect to cones, SIAM. J. Control and Optim., 15 (1977), 57-63.

    [3]

    G. Y. Chen and W. D. Rong, Characterizations of the Benson proper efficiency for nonconvex vector optimization, J. Optim. Theory Appl., 98 (1998), 365-384.doi: 10.1023/A:1022689517921.

    [4]

    G. Y. Chen, X. X. Huang and X. Q. Yang, "Vector Optimization. Lecture Notes in Economics and Mathematical Sciences, 541," Springer, Berlin, 2005.

    [5]

    M. Chicco, F. Mignanego, L. Pusillo and S. Tijs, Vector optimization problems via improvement sets, J. Optim. Theory Appl., 150 (2011), 516-529.doi: 10.1007/s10957-011-9851-1.

    [6]

    M. Ehrgott, "Multicriteria Optimization," Springer, Berlin, 2005.

    [7]

    Y. Gao and X. M. Yang, Optimality conditions for approximate solutions of vector optimization problems, J. Ind. Manag. Optim., 7 (2011), 483-496.doi: 10.3934/jimo.2011.7.483.

    [8]

    A. M. Geffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22 (1968), 618-630.

    [9]

    B. A. Ghaznavi-ghosoni, E. Khorram and M. Soleimani-damaneh, Scalarization for characterization of approximate strong/weak/proper efficiency in multiobjective optimization, Optimization, 62 (2013), 703-720.doi: 10.1080/02331934.2012.668190.

    [10]

    C. Gutiérrez, B. Jiménez and V. Novo, Improvement sets and vector optimization, Eur. J. Oper. Res., 223 (2012), 304-311.

    [11]

    C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems, SIAM J. Optim., 17 (2006), 688-710.

    [12]

    C. Gutiérrez, L. Huerga and V. Novo, Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems, J. Math. Anal. Appl., 389 (2012), 1046-1058.doi: 10.1016/j.jmaa.2011.12.050.

    [13]

    M. I. Henig, Proper efficiency with respect to cones, J. Optim. Theory Appl., 36 (1982), 387-407.doi: 10.1007/BF00934353.

    [14]

    J. Jahn, "Vector Optimization. Theory, Applications, and Extensions," Springer, Berlin, 2004.

    [15]

    Z. F. Li, Benson proper efficiency in the vector optimization of set-valued maps, J. Optim. Theory Appl., 98 (1998), 623-649.doi: 10.1023/A:1022676013609.

    [16]

    J. C. Liu, ε-Properly efficient solutions to nondifferentiable multiobjective programming problems, Appl. Math. Lett., 12 (1999), 109-113.doi: 10.1016/S0893-9659(99)00087-7.

    [17]

    D. T. Luc, "Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Sciences, 319," Springer, Berlin, 1988.

    [18]

    W. D. Rong and Y. Ma, ε-Properly efficient solutions of vector optimization problems with set-valued maps, OR Transactions, 4 (2000), 21-32.

    [19]

    X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions, J. Optim. Theory Appl., 110 (2001), 413-427.doi: 10.1023/A:1017535631418.

    [20]

    X. M. Yang, X. Q. Yang and G. Y. Chen, Theorems of the alternative and optimization with set-valued maps, J. Optim. Theory Appl., 107 (2000), 627-640.doi: 10.1023/A:1004613630675.

    [21]

    K. Q. Zhao and X. M. Yang, E-Benson proper efficiency in vector optimization, Optimization, doi:10.1080/02331934.2013.798321, 2013.doi: 10.1080/02331934.2013.798321.

    [22]

    K. Q. Zhao, X. M. Yang and J. W. Peng, Weak E-Optimal solution in vector optimization, Taiwan. J. Math., 17 (2013), 1287-1302.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return