\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Linear quadratic differential games with mixed leadership: The open-loop solution

Abstract / Introduction Related Papers Cited by
  • This paper is concerned with open-loop Stackelberg equilibria of two-player linear-quadratic differential games with mixed leadership. We prove that, under some appropriate assumptions on the coefficients, there exists a unique Stackelberg solution to such a differential game. Moreover, by means of the close interrelationship between the Riccati equations and the set of equations satisfied by the optimal open-loop control, we provide sufficient conditions to guarantee the existence and uniqueness of solutions to the associated Riccati equations with mixed-boundary conditions. As a result, the players' open-loop strategies can be represented in terms of the system state.
    Mathematics Subject Classification: Primary: 91A10, 91A23; Secondary: 34K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Başar, On the relative leadership property of Stackelberg strategies, J. Optimization Theory and Applications, 11 (1973), 655-661.doi: 10.1007/BF00935564.

    [2]

    T. Başar and A. Haurie, Feedback equilibria in differential games with structural and modal uncertainties, in "Advances in Large Scale Systems" (eds. J. B. Cruz, Jr.), JAE Press Inc., (1984), 163-201.

    [3]

    T. Başar, A. Haurie and G. Ricci, On the dominance of capitalists' leadership in a feedback Stackelberg solution of a differential game model of capitalism, J. Economic Dynamics and Control, 9 (1985), 101-125.doi: 10.1016/0165-1889(85)90026-0.

    [4]

    T. Başar and G. J. Olsder, "Dynamic Noncooperative Game Theory," 2nd edition, Academic Press, New York, 1995.

    [5]

    T. Başar, A. Bensoussan and S. P. Sethi, Differential games with mixed leadership: the open-loop solution, Applied Mathematics and Computation, 217 (2010), 972-979.doi: 10.1016/j.amc.2010.01.048.

    [6]

    A. Bensoussan, S. Chen and S. P. SethiFeedback Stackelberg solutions of infinite-horizon stochastic differential games, forthcoming.

    [7]

    A. Bensoussan, S. Chen and S. P. SethiThe maximum principle for global solutions of stochastic Stackelberg differential games, working paper.

    [8]

    G. F. Cachon, Supply chain coordination with contracts, in "Handbooks in OR and MS Vol. 11, SCM: Design, Coordination and Cooperation" (eds. A. G. De Kok and S. C. Graves), Elsevier, (2003), 227-339.

    [9]

    A. Chutani and S. P. Sethi, Cooperative advertising in a dynamic retail market oligopoly, Dynamic Games and Applications, 2012, forthcoming.doi: 10.1007/s13235-012-0053-8.

    [10]

    A. Chutani and S. P. Sethi, Optimal advertising and pricing in a dynamic durable goods supply chain, Journal of Optimization Theory and Applications, 154 (2012), 615-643.doi: 10.1007/s10957-012-0034-5.

    [11]

    E. Dockner, S. Jøgensen, N. V. Long and G. Sorger, "Differential Games in Economics and Management Science," Cambridge University Press, Cambridge, UK, 2000.doi: 10.1017/CBO9780511805127.

    [12]

    X. He, A. Krishnamoorthy, A. Prasad and S. P. Sethi, Retail competition and cooperative advertising, Operations Research Letters, 39 (2011), 11-16.doi: 10.1016/j.orl.2010.10.006.

    [13]

    X. He, A. Krishnamoorthy, A. Prasad and S. P. Sethi, Co-Op advertising in dynamic retail oligopolies, Decision Sciences, 43 (2012), 73-105.doi: 10.1111/j.1540-5915.2011.00336.x.

    [14]

    X. He, A. Prasad and S. P. Sethi, Cooperative advertising and pricing in a dynamic stochastic supply chain: feedback stackelberg strategies, Production and Operations Management, 18 (2009), 78-94.

    [15]

    X. He, A. Prasad, S. P. Sethi and G. J. Gutierrez, A survey of Stackelberg differential game models in supply chain and marketing channels, J. Systems Science and Systems Engineering, 16 (2007), 385-413.doi: 10.1007/s11518-007-5058-2.

    [16]

    A. Krishnamoorthy, A. Prasad and S. P. Sethi, Optimal pricing and advertising in a durable-good duopoly, European Journal of Operations Research, 200 (2010), 486-497.doi: 10.1016/j.ejor.2009.01.003.

    [17]

    G. Leitmann, On generalized Stackelberg strategies, J. Optimization Theory and Applications, 26 (1978), 637-643.doi: 10.1007/BF00933155.

    [18]

    E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Relat. Fields, 114 (1999), 123-150.doi: 10.1007/s004409970001.

    [19]

    A. Prasad, S. P. Sethi and P. A. Naik, Understanding the impact of churn in dynamic oligopoly markets, Automatica, 48 (2012), 2882-2887.doi: 10.1016/j.automatica.2012.08.031.

    [20]

    M. Simaan and J. B. Cruz, Jr., On the Stackelberg strategy in nonzero-sum games, J. Optimization Theory and Applications, 11 (1973), 533-555.doi: 10.1007/BF00935665.

    [21]

    M. Simaan and J. B. Cruz, Jr.Additional aspects of the Stackelberg strategy in nonzero-sum games, J. Optimization Theory and Applications, 11 (1973b), 613-626. doi: 10.1007/BF00935561.

    [22]

    H. von Stackelberg, "Marktform und Gleichgewicht," Springer, Vienna, 1934 (An English translation appeared in "The Theory of the Market Economy," Oxford University Press, New York, 1952).

    [23]

    S. Tang, General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations, SIAM J. Control Optim., 42 (2003), 53-75.doi: 10.1137/S0363012901387550.

    [24]

    J. Yong, Linear forward-backward stochastic differential equations with random coefficients, Probab. Theory Relat. Fields, 135 (2006), 53-83.doi: 10.1007/s00440-005-0452-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return