-
Previous Article
A weighted-path-following method for symmetric cone linear complementarity problems
- NACO Home
- This Issue
-
Next Article
Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration
Existence and convergence results for best proximity points in cone metric spaces
1. | Department of Mathematics, Kyungsung University, Busan 608-736 |
References:
[1] |
M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Analysis, 70 (2009), 3665-3671.
doi: 10.1016/j.na.2008.07.022. |
[2] |
M. A. Al-Thagafi and N. Shahzad, Best proximity sets and equilibrium pairs for a finite family of mulimaps, Fixed Point Theory Appl., Article ID 457069, 10 pages, 10 (2008). |
[3] |
M. A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Analysis, 70 (2009), 1209-1216.
doi: 10.1016/j.na.2008.02.004. |
[4] |
S. S. Basha, Best proximity point theorems: resolution of an important non-linear programming problem, Optim. Lett., 7 (2013), 1167-1177.
doi: 10.1007/s11590-012-0493-5. |
[5] |
A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 232 (2006), 1001-1006.
doi: 10.1016/j.jmaa.2005.10.081. |
[6] |
K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 122 (1969), 234-240. |
[7] |
M. Gabeleh and A. Abkar, Best proximity points for semi-cyclic contractive pairs in Banach spaces, Int. Math. Forum, 6 (2011), 2179-2186. |
[8] |
L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
doi: 10.1016/j.jmaa.2005.03.087. |
[9] |
S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contraction, Fixed Point Theory Appl., Art. ID 197308, 9 (2009). |
[10] |
W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Analysis, 68 (2008), 2216-2227.
doi: 10.1016/j.na.2007.01.057. |
[11] |
W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Func. Anal. Optim., 24 (2003), 851-862.
doi: 10.1081/NFA-120026380. |
[12] |
B. S. Lee, Cone metirc version of existence and convergence for best proximity points, Universal J. Appl. Math., 2 (2014), 104-108. |
[13] |
C. Mongkalkeha and P. Kumam, Some common best proximity points for proximity commuting mappings, Optim. Lett., 7 (2013), 1825-1826.
doi: 10.1007/s11590-012-0525-1. |
[14] |
D. Turkoglu, M. Abuloha and T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Analysis, 72 (2010), 348-353.
doi: 10.1016/j.na.2009.06.058. |
[15] |
D. Xu and L. Deng, Cone semi-metric spaces and fixed point theorems for generalized weak contractive mappings, Nonlinear Analysis Forum, 18 (2013), 57-64. |
show all references
References:
[1] |
M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Analysis, 70 (2009), 3665-3671.
doi: 10.1016/j.na.2008.07.022. |
[2] |
M. A. Al-Thagafi and N. Shahzad, Best proximity sets and equilibrium pairs for a finite family of mulimaps, Fixed Point Theory Appl., Article ID 457069, 10 pages, 10 (2008). |
[3] |
M. A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Analysis, 70 (2009), 1209-1216.
doi: 10.1016/j.na.2008.02.004. |
[4] |
S. S. Basha, Best proximity point theorems: resolution of an important non-linear programming problem, Optim. Lett., 7 (2013), 1167-1177.
doi: 10.1007/s11590-012-0493-5. |
[5] |
A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 232 (2006), 1001-1006.
doi: 10.1016/j.jmaa.2005.10.081. |
[6] |
K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 122 (1969), 234-240. |
[7] |
M. Gabeleh and A. Abkar, Best proximity points for semi-cyclic contractive pairs in Banach spaces, Int. Math. Forum, 6 (2011), 2179-2186. |
[8] |
L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
doi: 10.1016/j.jmaa.2005.03.087. |
[9] |
S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contraction, Fixed Point Theory Appl., Art. ID 197308, 9 (2009). |
[10] |
W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Analysis, 68 (2008), 2216-2227.
doi: 10.1016/j.na.2007.01.057. |
[11] |
W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Func. Anal. Optim., 24 (2003), 851-862.
doi: 10.1081/NFA-120026380. |
[12] |
B. S. Lee, Cone metirc version of existence and convergence for best proximity points, Universal J. Appl. Math., 2 (2014), 104-108. |
[13] |
C. Mongkalkeha and P. Kumam, Some common best proximity points for proximity commuting mappings, Optim. Lett., 7 (2013), 1825-1826.
doi: 10.1007/s11590-012-0525-1. |
[14] |
D. Turkoglu, M. Abuloha and T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear Analysis, 72 (2010), 348-353.
doi: 10.1016/j.na.2009.06.058. |
[15] |
D. Xu and L. Deng, Cone semi-metric spaces and fixed point theorems for generalized weak contractive mappings, Nonlinear Analysis Forum, 18 (2013), 57-64. |
[1] |
Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264 |
[2] |
Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259 |
[3] |
Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial and Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269 |
[4] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1 |
[5] |
Duraisamy Balraj, Muthaiah Marudai, Zoran D. Mitrovic, Ozgur Ege, Veeraraghavan Piramanantham. Existence of best proximity points satisfying two constraint inequalities. Electronic Research Archive, 2020, 28 (1) : 549-557. doi: 10.3934/era.2020028 |
[6] |
Viviane Baladi, Sébastien Gouëzel. Banach spaces for piecewise cone-hyperbolic maps. Journal of Modern Dynamics, 2010, 4 (1) : 91-137. doi: 10.3934/jmd.2010.4.91 |
[7] |
Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232 |
[8] |
Xin-He Miao, Jein-Shan Chen. Error bounds for symmetric cone complementarity problems. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 627-641. doi: 10.3934/naco.2013.3.627 |
[9] |
Peter Kuchment, Fatma Terzioglu. Inversion of weighted divergent beam and cone transforms. Inverse Problems and Imaging, 2017, 11 (6) : 1071-1090. doi: 10.3934/ipi.2017049 |
[10] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272 |
[11] |
Maciej J. Capiński, Piotr Zgliczyński. Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 641-670. doi: 10.3934/dcds.2011.30.641 |
[12] |
Piotr Pokora, Tomasz Szemberg. Minkowski bases on algebraic surfaces with rational polyhedral pseudo-effective cone. Electronic Research Announcements, 2014, 21: 126-131. doi: 10.3934/era.2014.21.126 |
[13] |
Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651 |
[14] |
Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1873-1884. doi: 10.3934/jimo.2019033 |
[15] |
Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141 |
[16] |
Yi Zhang, Liwei Zhang, Jia Wu. On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints. Journal of Industrial and Management Optimization, 2018, 14 (3) : 981-1005. doi: 10.3934/jimo.2017086 |
[17] |
Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529 |
[18] |
Xiaoling Guo, Zhibin Deng, Shu-Cherng Fang, Wenxun Xing. Quadratic optimization over one first-order cone. Journal of Industrial and Management Optimization, 2014, 10 (3) : 945-963. doi: 10.3934/jimo.2014.10.945 |
[19] |
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171 |
[20] |
Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial and Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]