Citation: |
[1] |
M. Achache, A weighted-path-following method for the linear complementarity problem, Studia Univ. Babes-Bolyai, Informatica, XLIX (1) (2004), 61-73. |
[2] |
Z. Darvay, New interior-point algorithms in linear programming, Adv. Model. Optim., 5 (2003), 51-92. |
[3] |
J. Ding and T. Y. Li, An algorithm based on weighted logarithmic barrier functions for linear complementarity problems, Arabian Journal for Science and Engineering, 15 (1990), 679-685. |
[4] |
J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, Oxford Science Publications, 1994. |
[5] |
L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Mathematicsche Zeitschrift, 239 (2002), 117-129.doi: 10.1007/s002090100286. |
[6] |
L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. Appl. Math., 86 (1997), 149-175.doi: 10.1016/S0377-0427(97)00153-2. |
[7] |
L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity, 1 (1997), 331-357.doi: 10.1023/A:1009701824047. |
[8] |
O. Güler, Barrier functions in interior-point methods, Math. Oper. Res., 21 (1996), 860-885.doi: 10.1287/moor.21.4.860. |
[9] |
B. Jansen, C. Roos, T. Terlaky and J.-Ph. Vial, Primal-dual target-following algorithms for linear programming, Anna. Oper. Res., 62 (1996), 197-231.doi: 10.1007/BF02206817. |
[10] |
B. Kheirfam, A full Nesterov-Todd step feasible weighted primal-dual interior-point algorithm for symmetric optimization, J. Oper. Res. Soci. of China, 1 (2013), 467-481. |
[11] |
M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices, SIAM J. Optim., 7 (1997), 86-125.doi: 10.1137/S1052623494269035. |
[12] |
G. Lesaja and C. Roos, Kernel-based interior-point methods for monotone linear complementarity problems over symmetric cones, J. Optim. Theory Appl., 150 (2011), 444-474.doi: 10.1007/s10957-011-9848-9. |
[13] |
Y. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming, Math. Oper. Res., 22 (1997), 1-42.doi: 10.1287/moor.22.1.1. |
[14] |
Y. E. Nesterov, M. J. Todd, Primal-dual interior-point methods for self-scaled cones, SIAM J. Optim., 8 (1998), 324-364.doi: 10.1137/S1052623495290209. |
[15] |
B. K. Rangarajan, Polynomial convergence of infeasible interior-point methods over symmetric cones, SIAM J. Optim., 16 (2006), 1211-1229.doi: 10.1137/040606557. |
[16] |
C. Roos and D. den Hertog, A polynomial method of approximate weighted centers for linear programming, Technical Report 89-13, Faculty of Technical Mathematics and Informatics, TU Delft, NL-2628 BL Delft, The Netherlands, 1994. |
[17] |
S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior-point algorithm to symmetric cones, Math. Program., 96 (2003), 409-438.doi: 10.1007/s10107-003-0380-z. |
[18] |
S. H. Schmieta and F. Alizadeh, Associative and Jordan algebras and polynomial time interior-point algorithms for symmetric cones, Math. Oper. Res., 26 (2001), 543-564.doi: 10.1287/moor.26.3.543.10582. |
[19] |
J. F. Sturm, Similarity and other spectral relations for symmetric cones, Algebra Appl., 312 (2000), 135-154.doi: 10.1016/S0024-3795(00)00096-3. |
[20] |
M. V. C. Vieira, Jordan Algebraic Approach to Symmetric Optimization, Ph.D. Thesis, Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands, 2007. |
[21] |
G. Q. Wang and Y. Q. Bai, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization, J. Optim. Theory Appl., 154 (2012), 966-985.doi: 10.1007/s10957-012-0013-x. |