2014, 4(3): 181-191. doi: 10.3934/naco.2014.4.181

Robust control design of autonomous bicycle kinematics

1. 

Systems Engineering Department, King Fahd University of Petroleum and Minerals, P. O. Box 5067, Dhahran 31261, Saudi Arabia, Saudi Arabia

Received  August 2013 Revised  April 2014 Published  September 2014

In this paper, we provide a robust control approach for controlling the autonomous bicycle kinematics with the objective of stabilizing the bicycle steer $\delta$ and roll $\phi$ angles. The dynamical model is the so-called 'Whipples Bicycle Model', where the roll (lean) angle and the steer angle of the bicycle are the two outputs of the model and the torques across the roll and steer angle as the two control variables. Two control design methods are developed based on $H_\infty$ and $H_2$-norm optimization using dynamic output feedback. The ensuing results are compared with an adaptive control scheme. The autonomous bicycle was tested for varying velocities.
Citation: Magdi S. Mahmoud, Omar Al-Buraiki. Robust control design of autonomous bicycle kinematics. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 181-191. doi: 10.3934/naco.2014.4.181
References:
[1]

K. J. Astrom, R. E. Klein and A. Lennartsson, Bicycle dynamics and control, IEEE Control Systems Magazine, 25 (2005), 26-47. doi: 10.1109/MCS.2005.1499389.

[2]

C. K. Chen and T. K. Dao, Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic, Vehicle System Dynamics, 48 (2010), 133-147.

[3]

C. Cornejo and L. Alvarez-Icaza, Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction, J. Vibration and Control, 18 (2012), 1025-1042. doi: 10.1177/1077546311408469.

[4]

M. L. Fair and S. L. Campbell, Active incipient fault detection in continuous time systems with multiple simultaneous faults, Numerical Algebra, Control and Optimization, 1 (2011), 211-224. doi: 10.3934/naco.2011.1.211.

[5]

L. Feng, Robust Control Design: An Optimal Control Approach, Wayne State University, USA and Tongji University, China, John Wiley and Sons Ltd, 2007.

[6]

N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics, Ph.D. Dissertation, University of California, 1995.

[7]

Y. Harata, Y. Banno and K. Taji, Parametric excitation based bipedal walking: Control method and optimization, Numerical Algebra, Control and Optimization, 1 (2011), 171-190. doi: 10.3934/naco.2011.1.171.

[8]

C. L. Hwang, H. M. Wu and C. L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle, IEEE Trans. Control Systems Technology, 17 (2009), 658-670.

[9]

N. H. K. Iuchi, H. Niki and T. Murakami, Attitude control of bicycle motion by steering angle and variable COG control, Proc. 31st Annual Conference of IEEE Industrial Electronics Society, IECON, (2005), 16-21.

[10]

R. N. Jazar, Mathematical theory of auto-driver for autonomous vehicles, J. Vibration and Control, 16 (2010), 253-279. doi: 10.1177/1077546309104467.

[11]

R. Khaled and N. G. Chalhoub, A dynamic model and a robust controller for a fully-actuated marine surface vessel, J. Vibration and Control, 17 (2011), 801-812.

[12]

L. Lujng, System Identification Theory for User, Linkopping University, Sweden.

[13]

M. S. Mahmoud, Computer-Operated Systems Control, Marcel Dekker Inc., New York, 1991.

[14]

M. S. Mahmoud, Robust control of blood gases during extracorporeal circulation, IET Control Theory and Applications, 5 (2011), 1577-1585. doi: 10.1049/iet-cta.2010.0665.

[15]

M. S. Mahmoud, Resilient L2L filtering of polytopic systems with state delays, IET Control Theory And Applications, 1 (2007), 141-154. doi: 10.1049/iet-cta:20045281.

[16]

M. S. Mahmoud and A. Y. Al-Rayyah, Efficient parameterisation to stability and feedback synthesis of linear time-delay systems, IET control theory and applications, 3 (2009), 1107-1118. doi: 10.1049/iet-cta.2008.0152.

[17]

M. S. Mahmoud and Yuanqing Xia, Robust filter design for piecewise discrete-time systems with time-varying delays, International Journal of Robust and Nonlinear Control, 20 (2010), 544-560. doi: 10.1002/rnc.1447.

[18]

M. S. Mahmoud and M. M. Hussain, Design of linear systems with saturating actuators: A survey, Int. J. Numerical Algebra, Control and Optimization, 2 (2012), 413-435. doi: 10.3934/naco.2012.2.413.

[19]

J. Meijaard, J. Papadopoulos, A. Ruina and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review, Proc. the Royal Society A: Mathematical, Physical and Engineering Science, 463 (2007). doi: 10.1098/rspa.2007.1857.

[20]

K. Mendrok and Tadeusz Uhl, Load identification using a modified modal filter technique, J. Vibration and Control, 16 (2010), 89-105. doi: 10.1177/1077546309103274.

[21]

G. T. Michaltsos, Bouncing of a vehicle on an irregularity: A mathematical model, J. Vibration and Control, 16 (2010), 181-206. doi: 10.1177/1077546309104878.

[22]

H. Moradi, M. R. Movahhedy, and G. Vossoughi, Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties, J. Vibration and Control, 16 (2010), 231-251.

[23]

U. Nenner, R. Linker and P. Gutman, Robust feedback stabilization of an unmanned motorcycle, Control Engineering Practice, 2010.

[24]

Omar S. Al-Buraiki and El Ferik, Sami, Adaptive control of autonomous bicycle kinematics, Proc. 13th Automation and Systems (ICCAS), Gwangju, Korea, Oct. (2013), 20-23.

[25]

M. C. Pai, Sliding mode control of vibration in uncertain time-delay systems, J. Vibration and Control, 16 (2010),2131-2145. doi: 10.1177/1077546309350865.

[26]

H. Schttler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation, Int. J. Numerical Algebra, Control and Optimization, 2 (2012), 631-654. doi: 10.3934/naco.2012.2.631.

[27]

R. Sharp and D. Limebeer, A motorcycle model for stability and control analysis, Multi-body System Dynamics, 6 (2001), 123-142.

[28]

R. Sharp, Optimal preview speed-tracking control for motorcycles, Multi-body System Dynamics, 18 (2007), 397-411.

[29]

S. Sivrioglu, H control for suppressing acoustic modes of a distributed structure using cluster sensing and actuation, J. Vibration and Control, 16 (2010), 439-453.

[30]

N. Umashankar and H. D. Sharma, Adaptive neuro-fuzzy controller for stabilizing autonomous bicycle, Proc. IEEE International Conference Robotics and Biometrics, ROBIO06, (2006), 1652-1657.

[31]

T. Yamaguchi, T. Shibata and T. Murakami, Self-sustaining approach of electric bicycle by acceleration control based backstepping, Proc. 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON, (2007), 2610-2614.

[32]

K. Zhou and J. C. Doyle, Essentials of Robust Control, NJ: Prentice Hall, 1998.

show all references

References:
[1]

K. J. Astrom, R. E. Klein and A. Lennartsson, Bicycle dynamics and control, IEEE Control Systems Magazine, 25 (2005), 26-47. doi: 10.1109/MCS.2005.1499389.

[2]

C. K. Chen and T. K. Dao, Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic, Vehicle System Dynamics, 48 (2010), 133-147.

[3]

C. Cornejo and L. Alvarez-Icaza, Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction, J. Vibration and Control, 18 (2012), 1025-1042. doi: 10.1177/1077546311408469.

[4]

M. L. Fair and S. L. Campbell, Active incipient fault detection in continuous time systems with multiple simultaneous faults, Numerical Algebra, Control and Optimization, 1 (2011), 211-224. doi: 10.3934/naco.2011.1.211.

[5]

L. Feng, Robust Control Design: An Optimal Control Approach, Wayne State University, USA and Tongji University, China, John Wiley and Sons Ltd, 2007.

[6]

N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics, Ph.D. Dissertation, University of California, 1995.

[7]

Y. Harata, Y. Banno and K. Taji, Parametric excitation based bipedal walking: Control method and optimization, Numerical Algebra, Control and Optimization, 1 (2011), 171-190. doi: 10.3934/naco.2011.1.171.

[8]

C. L. Hwang, H. M. Wu and C. L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle, IEEE Trans. Control Systems Technology, 17 (2009), 658-670.

[9]

N. H. K. Iuchi, H. Niki and T. Murakami, Attitude control of bicycle motion by steering angle and variable COG control, Proc. 31st Annual Conference of IEEE Industrial Electronics Society, IECON, (2005), 16-21.

[10]

R. N. Jazar, Mathematical theory of auto-driver for autonomous vehicles, J. Vibration and Control, 16 (2010), 253-279. doi: 10.1177/1077546309104467.

[11]

R. Khaled and N. G. Chalhoub, A dynamic model and a robust controller for a fully-actuated marine surface vessel, J. Vibration and Control, 17 (2011), 801-812.

[12]

L. Lujng, System Identification Theory for User, Linkopping University, Sweden.

[13]

M. S. Mahmoud, Computer-Operated Systems Control, Marcel Dekker Inc., New York, 1991.

[14]

M. S. Mahmoud, Robust control of blood gases during extracorporeal circulation, IET Control Theory and Applications, 5 (2011), 1577-1585. doi: 10.1049/iet-cta.2010.0665.

[15]

M. S. Mahmoud, Resilient L2L filtering of polytopic systems with state delays, IET Control Theory And Applications, 1 (2007), 141-154. doi: 10.1049/iet-cta:20045281.

[16]

M. S. Mahmoud and A. Y. Al-Rayyah, Efficient parameterisation to stability and feedback synthesis of linear time-delay systems, IET control theory and applications, 3 (2009), 1107-1118. doi: 10.1049/iet-cta.2008.0152.

[17]

M. S. Mahmoud and Yuanqing Xia, Robust filter design for piecewise discrete-time systems with time-varying delays, International Journal of Robust and Nonlinear Control, 20 (2010), 544-560. doi: 10.1002/rnc.1447.

[18]

M. S. Mahmoud and M. M. Hussain, Design of linear systems with saturating actuators: A survey, Int. J. Numerical Algebra, Control and Optimization, 2 (2012), 413-435. doi: 10.3934/naco.2012.2.413.

[19]

J. Meijaard, J. Papadopoulos, A. Ruina and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review, Proc. the Royal Society A: Mathematical, Physical and Engineering Science, 463 (2007). doi: 10.1098/rspa.2007.1857.

[20]

K. Mendrok and Tadeusz Uhl, Load identification using a modified modal filter technique, J. Vibration and Control, 16 (2010), 89-105. doi: 10.1177/1077546309103274.

[21]

G. T. Michaltsos, Bouncing of a vehicle on an irregularity: A mathematical model, J. Vibration and Control, 16 (2010), 181-206. doi: 10.1177/1077546309104878.

[22]

H. Moradi, M. R. Movahhedy, and G. Vossoughi, Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties, J. Vibration and Control, 16 (2010), 231-251.

[23]

U. Nenner, R. Linker and P. Gutman, Robust feedback stabilization of an unmanned motorcycle, Control Engineering Practice, 2010.

[24]

Omar S. Al-Buraiki and El Ferik, Sami, Adaptive control of autonomous bicycle kinematics, Proc. 13th Automation and Systems (ICCAS), Gwangju, Korea, Oct. (2013), 20-23.

[25]

M. C. Pai, Sliding mode control of vibration in uncertain time-delay systems, J. Vibration and Control, 16 (2010),2131-2145. doi: 10.1177/1077546309350865.

[26]

H. Schttler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation, Int. J. Numerical Algebra, Control and Optimization, 2 (2012), 631-654. doi: 10.3934/naco.2012.2.631.

[27]

R. Sharp and D. Limebeer, A motorcycle model for stability and control analysis, Multi-body System Dynamics, 6 (2001), 123-142.

[28]

R. Sharp, Optimal preview speed-tracking control for motorcycles, Multi-body System Dynamics, 18 (2007), 397-411.

[29]

S. Sivrioglu, H control for suppressing acoustic modes of a distributed structure using cluster sensing and actuation, J. Vibration and Control, 16 (2010), 439-453.

[30]

N. Umashankar and H. D. Sharma, Adaptive neuro-fuzzy controller for stabilizing autonomous bicycle, Proc. IEEE International Conference Robotics and Biometrics, ROBIO06, (2006), 1652-1657.

[31]

T. Yamaguchi, T. Shibata and T. Murakami, Self-sustaining approach of electric bicycle by acceleration control based backstepping, Proc. 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON, (2007), 2610-2614.

[32]

K. Zhou and J. C. Doyle, Essentials of Robust Control, NJ: Prentice Hall, 1998.

[1]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[2]

Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11

[3]

M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365

[4]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 197-212. doi: 10.3934/dcdss.2021036

[5]

Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021

[6]

Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1343-1355. doi: 10.3934/jimo.2020024

[7]

Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005

[8]

Canghua Jiang, Dongming Zhang, Chi Yuan, Kok Ley Teo. An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 135-157. doi: 10.3934/naco.2021056

[9]

Ramalingam Sakthivel, Palanisamy Selvaraj, Yeong-Jae Kim, Dong-Hoon Lee, Oh-Min Kwon, Rathinasamy Sakthivel. Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022028

[10]

Zhaoxia Duan, Jinling Liang, Zhengrong Xiang. $ H_{\infty} $ control for continuous-discrete systems in T-S fuzzy model with finite frequency specifications. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022064

[11]

Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial and Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153

[12]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[13]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140

[14]

Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4121-4141. doi: 10.3934/dcdsb.2021220

[15]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems and Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[16]

Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368

[17]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[18]

Zhen-Zhen Tao, Bing Sun. Error estimates for spectral approximation of flow optimal control problem with $ L^2 $-norm control constraint. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022030

[19]

Changjun Yu, Honglei Xu, Kok Lay Teo. Preface: Advances in theory and real world applications of control and dynamic optimization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : i-iii. doi: 10.3934/dcdss.2020094

[20]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

 Impact Factor: 

Metrics

  • PDF downloads (177)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]