2014, 4(3): 181-191. doi: 10.3934/naco.2014.4.181

Robust control design of autonomous bicycle kinematics

1. 

Systems Engineering Department, King Fahd University of Petroleum and Minerals, P. O. Box 5067, Dhahran 31261, Saudi Arabia, Saudi Arabia

Received  August 2013 Revised  April 2014 Published  September 2014

In this paper, we provide a robust control approach for controlling the autonomous bicycle kinematics with the objective of stabilizing the bicycle steer $\delta$ and roll $\phi$ angles. The dynamical model is the so-called 'Whipples Bicycle Model', where the roll (lean) angle and the steer angle of the bicycle are the two outputs of the model and the torques across the roll and steer angle as the two control variables. Two control design methods are developed based on $H_\infty$ and $H_2$-norm optimization using dynamic output feedback. The ensuing results are compared with an adaptive control scheme. The autonomous bicycle was tested for varying velocities.
Citation: Magdi S. Mahmoud, Omar Al-Buraiki. Robust control design of autonomous bicycle kinematics. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 181-191. doi: 10.3934/naco.2014.4.181
References:
[1]

K. J. Astrom, R. E. Klein and A. Lennartsson, Bicycle dynamics and control,, IEEE Control Systems Magazine, 25 (2005), 26.  doi: 10.1109/MCS.2005.1499389.  Google Scholar

[2]

C. K. Chen and T. K. Dao, Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic,, Vehicle System Dynamics, 48 (2010), 133.   Google Scholar

[3]

C. Cornejo and L. Alvarez-Icaza, Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction,, J. Vibration and Control, 18 (2012), 1025.  doi: 10.1177/1077546311408469.  Google Scholar

[4]

M. L. Fair and S. L. Campbell, Active incipient fault detection in continuous time systems with multiple simultaneous faults,, Numerical Algebra, 1 (2011), 211.  doi: 10.3934/naco.2011.1.211.  Google Scholar

[5]

L. Feng, Robust Control Design: An Optimal Control Approach,, Wayne State University, (2007).   Google Scholar

[6]

N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics,, Ph.D. Dissertation, (1995).   Google Scholar

[7]

Y. Harata, Y. Banno and K. Taji, Parametric excitation based bipedal walking: Control method and optimization,, Numerical Algebra, 1 (2011), 171.  doi: 10.3934/naco.2011.1.171.  Google Scholar

[8]

C. L. Hwang, H. M. Wu and C. L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle,, IEEE Trans. Control Systems Technology, 17 (2009), 658.   Google Scholar

[9]

N. H. K. Iuchi, H. Niki and T. Murakami, Attitude control of bicycle motion by steering angle and variable COG control,, Proc. 31st Annual Conference of IEEE Industrial Electronics Society, (2005), 16.   Google Scholar

[10]

R. N. Jazar, Mathematical theory of auto-driver for autonomous vehicles,, J. Vibration and Control, 16 (2010), 253.  doi: 10.1177/1077546309104467.  Google Scholar

[11]

R. Khaled and N. G. Chalhoub, A dynamic model and a robust controller for a fully-actuated marine surface vessel,, J. Vibration and Control, 17 (2011), 801.   Google Scholar

[12]

L. Lujng, System Identification Theory for User,, Linkopping University, ().   Google Scholar

[13]

M. S. Mahmoud, Computer-Operated Systems Control,, Marcel Dekker Inc., (1991).   Google Scholar

[14]

M. S. Mahmoud, Robust control of blood gases during extracorporeal circulation,, IET Control Theory and Applications, 5 (2011), 1577.  doi: 10.1049/iet-cta.2010.0665.  Google Scholar

[15]

M. S. Mahmoud, Resilient L2L filtering of polytopic systems with state delays,, IET Control Theory And Applications, 1 (2007), 141.  doi: 10.1049/iet-cta:20045281.  Google Scholar

[16]

M. S. Mahmoud and A. Y. Al-Rayyah, Efficient parameterisation to stability and feedback synthesis of linear time-delay systems,, IET control theory and applications, 3 (2009), 1107.  doi: 10.1049/iet-cta.2008.0152.  Google Scholar

[17]

M. S. Mahmoud and Yuanqing Xia, Robust filter design for piecewise discrete-time systems with time-varying delays,, International Journal of Robust and Nonlinear Control, 20 (2010), 544.  doi: 10.1002/rnc.1447.  Google Scholar

[18]

M. S. Mahmoud and M. M. Hussain, Design of linear systems with saturating actuators: A survey,, Int. J. Numerical Algebra, 2 (2012), 413.  doi: 10.3934/naco.2012.2.413.  Google Scholar

[19]

J. Meijaard, J. Papadopoulos, A. Ruina and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review,, Proc. the Royal Society A: Mathematical, 463 (2007).  doi: 10.1098/rspa.2007.1857.  Google Scholar

[20]

K. Mendrok and Tadeusz Uhl, Load identification using a modified modal filter technique,, J. Vibration and Control, 16 (2010), 89.  doi: 10.1177/1077546309103274.  Google Scholar

[21]

G. T. Michaltsos, Bouncing of a vehicle on an irregularity: A mathematical model,, J. Vibration and Control, 16 (2010), 181.  doi: 10.1177/1077546309104878.  Google Scholar

[22]

H. Moradi, M. R. Movahhedy, and G. Vossoughi, Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties,, J. Vibration and Control, 16 (2010), 231.   Google Scholar

[23]

U. Nenner, R. Linker and P. Gutman, Robust feedback stabilization of an unmanned motorcycle,, Control Engineering Practice, (2010).   Google Scholar

[24]

Omar S. Al-Buraiki and El Ferik, Sami, Adaptive control of autonomous bicycle kinematics,, Proc. 13th Automation and Systems (ICCAS), (2013), 20.   Google Scholar

[25]

M. C. Pai, Sliding mode control of vibration in uncertain time-delay systems,, J. Vibration and Control, 16 (2010), 2131.  doi: 10.1177/1077546309350865.  Google Scholar

[26]

H. Schttler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation,, Int. J. Numerical Algebra, 2 (2012), 631.  doi: 10.3934/naco.2012.2.631.  Google Scholar

[27]

R. Sharp and D. Limebeer, A motorcycle model for stability and control analysis,, Multi-body System Dynamics, 6 (2001), 123.   Google Scholar

[28]

R. Sharp, Optimal preview speed-tracking control for motorcycles,, Multi-body System Dynamics, 18 (2007), 397.   Google Scholar

[29]

S. Sivrioglu, H control for suppressing acoustic modes of a distributed structure using cluster sensing and actuation,, J. Vibration and Control, 16 (2010), 439.   Google Scholar

[30]

N. Umashankar and H. D. Sharma, Adaptive neuro-fuzzy controller for stabilizing autonomous bicycle,, Proc. IEEE International Conference Robotics and Biometrics, (2006), 1652.   Google Scholar

[31]

T. Yamaguchi, T. Shibata and T. Murakami, Self-sustaining approach of electric bicycle by acceleration control based backstepping,, Proc. 33rd Annual Conference of the IEEE Industrial Electronics Society, (2007), 2610.   Google Scholar

[32]

K. Zhou and J. C. Doyle, Essentials of Robust Control,, NJ: Prentice Hall, (1998).   Google Scholar

show all references

References:
[1]

K. J. Astrom, R. E. Klein and A. Lennartsson, Bicycle dynamics and control,, IEEE Control Systems Magazine, 25 (2005), 26.  doi: 10.1109/MCS.2005.1499389.  Google Scholar

[2]

C. K. Chen and T. K. Dao, Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic,, Vehicle System Dynamics, 48 (2010), 133.   Google Scholar

[3]

C. Cornejo and L. Alvarez-Icaza, Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction,, J. Vibration and Control, 18 (2012), 1025.  doi: 10.1177/1077546311408469.  Google Scholar

[4]

M. L. Fair and S. L. Campbell, Active incipient fault detection in continuous time systems with multiple simultaneous faults,, Numerical Algebra, 1 (2011), 211.  doi: 10.3934/naco.2011.1.211.  Google Scholar

[5]

L. Feng, Robust Control Design: An Optimal Control Approach,, Wayne State University, (2007).   Google Scholar

[6]

N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics,, Ph.D. Dissertation, (1995).   Google Scholar

[7]

Y. Harata, Y. Banno and K. Taji, Parametric excitation based bipedal walking: Control method and optimization,, Numerical Algebra, 1 (2011), 171.  doi: 10.3934/naco.2011.1.171.  Google Scholar

[8]

C. L. Hwang, H. M. Wu and C. L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle,, IEEE Trans. Control Systems Technology, 17 (2009), 658.   Google Scholar

[9]

N. H. K. Iuchi, H. Niki and T. Murakami, Attitude control of bicycle motion by steering angle and variable COG control,, Proc. 31st Annual Conference of IEEE Industrial Electronics Society, (2005), 16.   Google Scholar

[10]

R. N. Jazar, Mathematical theory of auto-driver for autonomous vehicles,, J. Vibration and Control, 16 (2010), 253.  doi: 10.1177/1077546309104467.  Google Scholar

[11]

R. Khaled and N. G. Chalhoub, A dynamic model and a robust controller for a fully-actuated marine surface vessel,, J. Vibration and Control, 17 (2011), 801.   Google Scholar

[12]

L. Lujng, System Identification Theory for User,, Linkopping University, ().   Google Scholar

[13]

M. S. Mahmoud, Computer-Operated Systems Control,, Marcel Dekker Inc., (1991).   Google Scholar

[14]

M. S. Mahmoud, Robust control of blood gases during extracorporeal circulation,, IET Control Theory and Applications, 5 (2011), 1577.  doi: 10.1049/iet-cta.2010.0665.  Google Scholar

[15]

M. S. Mahmoud, Resilient L2L filtering of polytopic systems with state delays,, IET Control Theory And Applications, 1 (2007), 141.  doi: 10.1049/iet-cta:20045281.  Google Scholar

[16]

M. S. Mahmoud and A. Y. Al-Rayyah, Efficient parameterisation to stability and feedback synthesis of linear time-delay systems,, IET control theory and applications, 3 (2009), 1107.  doi: 10.1049/iet-cta.2008.0152.  Google Scholar

[17]

M. S. Mahmoud and Yuanqing Xia, Robust filter design for piecewise discrete-time systems with time-varying delays,, International Journal of Robust and Nonlinear Control, 20 (2010), 544.  doi: 10.1002/rnc.1447.  Google Scholar

[18]

M. S. Mahmoud and M. M. Hussain, Design of linear systems with saturating actuators: A survey,, Int. J. Numerical Algebra, 2 (2012), 413.  doi: 10.3934/naco.2012.2.413.  Google Scholar

[19]

J. Meijaard, J. Papadopoulos, A. Ruina and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review,, Proc. the Royal Society A: Mathematical, 463 (2007).  doi: 10.1098/rspa.2007.1857.  Google Scholar

[20]

K. Mendrok and Tadeusz Uhl, Load identification using a modified modal filter technique,, J. Vibration and Control, 16 (2010), 89.  doi: 10.1177/1077546309103274.  Google Scholar

[21]

G. T. Michaltsos, Bouncing of a vehicle on an irregularity: A mathematical model,, J. Vibration and Control, 16 (2010), 181.  doi: 10.1177/1077546309104878.  Google Scholar

[22]

H. Moradi, M. R. Movahhedy, and G. Vossoughi, Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties,, J. Vibration and Control, 16 (2010), 231.   Google Scholar

[23]

U. Nenner, R. Linker and P. Gutman, Robust feedback stabilization of an unmanned motorcycle,, Control Engineering Practice, (2010).   Google Scholar

[24]

Omar S. Al-Buraiki and El Ferik, Sami, Adaptive control of autonomous bicycle kinematics,, Proc. 13th Automation and Systems (ICCAS), (2013), 20.   Google Scholar

[25]

M. C. Pai, Sliding mode control of vibration in uncertain time-delay systems,, J. Vibration and Control, 16 (2010), 2131.  doi: 10.1177/1077546309350865.  Google Scholar

[26]

H. Schttler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation,, Int. J. Numerical Algebra, 2 (2012), 631.  doi: 10.3934/naco.2012.2.631.  Google Scholar

[27]

R. Sharp and D. Limebeer, A motorcycle model for stability and control analysis,, Multi-body System Dynamics, 6 (2001), 123.   Google Scholar

[28]

R. Sharp, Optimal preview speed-tracking control for motorcycles,, Multi-body System Dynamics, 18 (2007), 397.   Google Scholar

[29]

S. Sivrioglu, H control for suppressing acoustic modes of a distributed structure using cluster sensing and actuation,, J. Vibration and Control, 16 (2010), 439.   Google Scholar

[30]

N. Umashankar and H. D. Sharma, Adaptive neuro-fuzzy controller for stabilizing autonomous bicycle,, Proc. IEEE International Conference Robotics and Biometrics, (2006), 1652.   Google Scholar

[31]

T. Yamaguchi, T. Shibata and T. Murakami, Self-sustaining approach of electric bicycle by acceleration control based backstepping,, Proc. 33rd Annual Conference of the IEEE Industrial Electronics Society, (2007), 2610.   Google Scholar

[32]

K. Zhou and J. C. Doyle, Essentials of Robust Control,, NJ: Prentice Hall, (1998).   Google Scholar

[1]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[2]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[7]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[10]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[11]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[12]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[13]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[14]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[15]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[16]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[17]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[18]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[19]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

 Impact Factor: 

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]