2014, 4(3): 181-191. doi: 10.3934/naco.2014.4.181

Robust control design of autonomous bicycle kinematics

1. 

Systems Engineering Department, King Fahd University of Petroleum and Minerals, P. O. Box 5067, Dhahran 31261, Saudi Arabia, Saudi Arabia

Received  August 2013 Revised  April 2014 Published  September 2014

In this paper, we provide a robust control approach for controlling the autonomous bicycle kinematics with the objective of stabilizing the bicycle steer $\delta$ and roll $\phi$ angles. The dynamical model is the so-called 'Whipples Bicycle Model', where the roll (lean) angle and the steer angle of the bicycle are the two outputs of the model and the torques across the roll and steer angle as the two control variables. Two control design methods are developed based on $H_\infty$ and $H_2$-norm optimization using dynamic output feedback. The ensuing results are compared with an adaptive control scheme. The autonomous bicycle was tested for varying velocities.
Citation: Magdi S. Mahmoud, Omar Al-Buraiki. Robust control design of autonomous bicycle kinematics. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 181-191. doi: 10.3934/naco.2014.4.181
References:
[1]

K. J. Astrom, R. E. Klein and A. Lennartsson, Bicycle dynamics and control,, IEEE Control Systems Magazine, 25 (2005), 26. doi: 10.1109/MCS.2005.1499389. Google Scholar

[2]

C. K. Chen and T. K. Dao, Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic,, Vehicle System Dynamics, 48 (2010), 133. Google Scholar

[3]

C. Cornejo and L. Alvarez-Icaza, Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction,, J. Vibration and Control, 18 (2012), 1025. doi: 10.1177/1077546311408469. Google Scholar

[4]

M. L. Fair and S. L. Campbell, Active incipient fault detection in continuous time systems with multiple simultaneous faults,, Numerical Algebra, 1 (2011), 211. doi: 10.3934/naco.2011.1.211. Google Scholar

[5]

L. Feng, Robust Control Design: An Optimal Control Approach,, Wayne State University, (2007). Google Scholar

[6]

N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics,, Ph.D. Dissertation, (1995). Google Scholar

[7]

Y. Harata, Y. Banno and K. Taji, Parametric excitation based bipedal walking: Control method and optimization,, Numerical Algebra, 1 (2011), 171. doi: 10.3934/naco.2011.1.171. Google Scholar

[8]

C. L. Hwang, H. M. Wu and C. L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle,, IEEE Trans. Control Systems Technology, 17 (2009), 658. Google Scholar

[9]

N. H. K. Iuchi, H. Niki and T. Murakami, Attitude control of bicycle motion by steering angle and variable COG control,, Proc. 31st Annual Conference of IEEE Industrial Electronics Society, (2005), 16. Google Scholar

[10]

R. N. Jazar, Mathematical theory of auto-driver for autonomous vehicles,, J. Vibration and Control, 16 (2010), 253. doi: 10.1177/1077546309104467. Google Scholar

[11]

R. Khaled and N. G. Chalhoub, A dynamic model and a robust controller for a fully-actuated marine surface vessel,, J. Vibration and Control, 17 (2011), 801. Google Scholar

[12]

L. Lujng, System Identification Theory for User,, Linkopping University, (). Google Scholar

[13]

M. S. Mahmoud, Computer-Operated Systems Control,, Marcel Dekker Inc., (1991). Google Scholar

[14]

M. S. Mahmoud, Robust control of blood gases during extracorporeal circulation,, IET Control Theory and Applications, 5 (2011), 1577. doi: 10.1049/iet-cta.2010.0665. Google Scholar

[15]

M. S. Mahmoud, Resilient L2L filtering of polytopic systems with state delays,, IET Control Theory And Applications, 1 (2007), 141. doi: 10.1049/iet-cta:20045281. Google Scholar

[16]

M. S. Mahmoud and A. Y. Al-Rayyah, Efficient parameterisation to stability and feedback synthesis of linear time-delay systems,, IET control theory and applications, 3 (2009), 1107. doi: 10.1049/iet-cta.2008.0152. Google Scholar

[17]

M. S. Mahmoud and Yuanqing Xia, Robust filter design for piecewise discrete-time systems with time-varying delays,, International Journal of Robust and Nonlinear Control, 20 (2010), 544. doi: 10.1002/rnc.1447. Google Scholar

[18]

M. S. Mahmoud and M. M. Hussain, Design of linear systems with saturating actuators: A survey,, Int. J. Numerical Algebra, 2 (2012), 413. doi: 10.3934/naco.2012.2.413. Google Scholar

[19]

J. Meijaard, J. Papadopoulos, A. Ruina and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review,, Proc. the Royal Society A: Mathematical, 463 (2007). doi: 10.1098/rspa.2007.1857. Google Scholar

[20]

K. Mendrok and Tadeusz Uhl, Load identification using a modified modal filter technique,, J. Vibration and Control, 16 (2010), 89. doi: 10.1177/1077546309103274. Google Scholar

[21]

G. T. Michaltsos, Bouncing of a vehicle on an irregularity: A mathematical model,, J. Vibration and Control, 16 (2010), 181. doi: 10.1177/1077546309104878. Google Scholar

[22]

H. Moradi, M. R. Movahhedy, and G. Vossoughi, Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties,, J. Vibration and Control, 16 (2010), 231. Google Scholar

[23]

U. Nenner, R. Linker and P. Gutman, Robust feedback stabilization of an unmanned motorcycle,, Control Engineering Practice, (2010). Google Scholar

[24]

Omar S. Al-Buraiki and El Ferik, Sami, Adaptive control of autonomous bicycle kinematics,, Proc. 13th Automation and Systems (ICCAS), (2013), 20. Google Scholar

[25]

M. C. Pai, Sliding mode control of vibration in uncertain time-delay systems,, J. Vibration and Control, 16 (2010), 2131. doi: 10.1177/1077546309350865. Google Scholar

[26]

H. Schttler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation,, Int. J. Numerical Algebra, 2 (2012), 631. doi: 10.3934/naco.2012.2.631. Google Scholar

[27]

R. Sharp and D. Limebeer, A motorcycle model for stability and control analysis,, Multi-body System Dynamics, 6 (2001), 123. Google Scholar

[28]

R. Sharp, Optimal preview speed-tracking control for motorcycles,, Multi-body System Dynamics, 18 (2007), 397. Google Scholar

[29]

S. Sivrioglu, H control for suppressing acoustic modes of a distributed structure using cluster sensing and actuation,, J. Vibration and Control, 16 (2010), 439. Google Scholar

[30]

N. Umashankar and H. D. Sharma, Adaptive neuro-fuzzy controller for stabilizing autonomous bicycle,, Proc. IEEE International Conference Robotics and Biometrics, (2006), 1652. Google Scholar

[31]

T. Yamaguchi, T. Shibata and T. Murakami, Self-sustaining approach of electric bicycle by acceleration control based backstepping,, Proc. 33rd Annual Conference of the IEEE Industrial Electronics Society, (2007), 2610. Google Scholar

[32]

K. Zhou and J. C. Doyle, Essentials of Robust Control,, NJ: Prentice Hall, (1998). Google Scholar

show all references

References:
[1]

K. J. Astrom, R. E. Klein and A. Lennartsson, Bicycle dynamics and control,, IEEE Control Systems Magazine, 25 (2005), 26. doi: 10.1109/MCS.2005.1499389. Google Scholar

[2]

C. K. Chen and T. K. Dao, Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic,, Vehicle System Dynamics, 48 (2010), 133. Google Scholar

[3]

C. Cornejo and L. Alvarez-Icaza, Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction,, J. Vibration and Control, 18 (2012), 1025. doi: 10.1177/1077546311408469. Google Scholar

[4]

M. L. Fair and S. L. Campbell, Active incipient fault detection in continuous time systems with multiple simultaneous faults,, Numerical Algebra, 1 (2011), 211. doi: 10.3934/naco.2011.1.211. Google Scholar

[5]

L. Feng, Robust Control Design: An Optimal Control Approach,, Wayne State University, (2007). Google Scholar

[6]

N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics,, Ph.D. Dissertation, (1995). Google Scholar

[7]

Y. Harata, Y. Banno and K. Taji, Parametric excitation based bipedal walking: Control method and optimization,, Numerical Algebra, 1 (2011), 171. doi: 10.3934/naco.2011.1.171. Google Scholar

[8]

C. L. Hwang, H. M. Wu and C. L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle,, IEEE Trans. Control Systems Technology, 17 (2009), 658. Google Scholar

[9]

N. H. K. Iuchi, H. Niki and T. Murakami, Attitude control of bicycle motion by steering angle and variable COG control,, Proc. 31st Annual Conference of IEEE Industrial Electronics Society, (2005), 16. Google Scholar

[10]

R. N. Jazar, Mathematical theory of auto-driver for autonomous vehicles,, J. Vibration and Control, 16 (2010), 253. doi: 10.1177/1077546309104467. Google Scholar

[11]

R. Khaled and N. G. Chalhoub, A dynamic model and a robust controller for a fully-actuated marine surface vessel,, J. Vibration and Control, 17 (2011), 801. Google Scholar

[12]

L. Lujng, System Identification Theory for User,, Linkopping University, (). Google Scholar

[13]

M. S. Mahmoud, Computer-Operated Systems Control,, Marcel Dekker Inc., (1991). Google Scholar

[14]

M. S. Mahmoud, Robust control of blood gases during extracorporeal circulation,, IET Control Theory and Applications, 5 (2011), 1577. doi: 10.1049/iet-cta.2010.0665. Google Scholar

[15]

M. S. Mahmoud, Resilient L2L filtering of polytopic systems with state delays,, IET Control Theory And Applications, 1 (2007), 141. doi: 10.1049/iet-cta:20045281. Google Scholar

[16]

M. S. Mahmoud and A. Y. Al-Rayyah, Efficient parameterisation to stability and feedback synthesis of linear time-delay systems,, IET control theory and applications, 3 (2009), 1107. doi: 10.1049/iet-cta.2008.0152. Google Scholar

[17]

M. S. Mahmoud and Yuanqing Xia, Robust filter design for piecewise discrete-time systems with time-varying delays,, International Journal of Robust and Nonlinear Control, 20 (2010), 544. doi: 10.1002/rnc.1447. Google Scholar

[18]

M. S. Mahmoud and M. M. Hussain, Design of linear systems with saturating actuators: A survey,, Int. J. Numerical Algebra, 2 (2012), 413. doi: 10.3934/naco.2012.2.413. Google Scholar

[19]

J. Meijaard, J. Papadopoulos, A. Ruina and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review,, Proc. the Royal Society A: Mathematical, 463 (2007). doi: 10.1098/rspa.2007.1857. Google Scholar

[20]

K. Mendrok and Tadeusz Uhl, Load identification using a modified modal filter technique,, J. Vibration and Control, 16 (2010), 89. doi: 10.1177/1077546309103274. Google Scholar

[21]

G. T. Michaltsos, Bouncing of a vehicle on an irregularity: A mathematical model,, J. Vibration and Control, 16 (2010), 181. doi: 10.1177/1077546309104878. Google Scholar

[22]

H. Moradi, M. R. Movahhedy, and G. Vossoughi, Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties,, J. Vibration and Control, 16 (2010), 231. Google Scholar

[23]

U. Nenner, R. Linker and P. Gutman, Robust feedback stabilization of an unmanned motorcycle,, Control Engineering Practice, (2010). Google Scholar

[24]

Omar S. Al-Buraiki and El Ferik, Sami, Adaptive control of autonomous bicycle kinematics,, Proc. 13th Automation and Systems (ICCAS), (2013), 20. Google Scholar

[25]

M. C. Pai, Sliding mode control of vibration in uncertain time-delay systems,, J. Vibration and Control, 16 (2010), 2131. doi: 10.1177/1077546309350865. Google Scholar

[26]

H. Schttler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation,, Int. J. Numerical Algebra, 2 (2012), 631. doi: 10.3934/naco.2012.2.631. Google Scholar

[27]

R. Sharp and D. Limebeer, A motorcycle model for stability and control analysis,, Multi-body System Dynamics, 6 (2001), 123. Google Scholar

[28]

R. Sharp, Optimal preview speed-tracking control for motorcycles,, Multi-body System Dynamics, 18 (2007), 397. Google Scholar

[29]

S. Sivrioglu, H control for suppressing acoustic modes of a distributed structure using cluster sensing and actuation,, J. Vibration and Control, 16 (2010), 439. Google Scholar

[30]

N. Umashankar and H. D. Sharma, Adaptive neuro-fuzzy controller for stabilizing autonomous bicycle,, Proc. IEEE International Conference Robotics and Biometrics, (2006), 1652. Google Scholar

[31]

T. Yamaguchi, T. Shibata and T. Murakami, Self-sustaining approach of electric bicycle by acceleration control based backstepping,, Proc. 33rd Annual Conference of the IEEE Industrial Electronics Society, (2007), 2610. Google Scholar

[32]

K. Zhou and J. C. Doyle, Essentials of Robust Control,, NJ: Prentice Hall, (1998). Google Scholar

[1]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[2]

Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11

[3]

M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365

[4]

Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021

[5]

Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial & Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153

[6]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[7]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140

[8]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems & Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[9]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[10]

Changjun Yu, Honglei Xu, Kok Lay Teo. Preface: Advances in theory and real world applications of control and dynamic optimization. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020094

[11]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[12]

Amol Sasane. Extension of the $\nu$-metric for stabilizable plants over $H^\infty$. Mathematical Control & Related Fields, 2012, 2 (1) : 29-44. doi: 10.3934/mcrf.2012.2.29

[13]

Antonio Vitolo. $H^{1,p}$-eigenvalues and $L^\infty$-estimates in quasicylindrical domains. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1315-1329. doi: 10.3934/cpaa.2011.10.1315

[14]

Zhao-Han Sheng, Tingwen Huang, Jian-Guo Du, Qiang Mei, Hui Huang. Study on self-adaptive proportional control method for a class of output models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 459-477. doi: 10.3934/dcdsb.2009.11.459

[15]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[16]

Sijia Zhong, Daoyuan Fang. $L^2$-concentration phenomenon for Zakharov system below energy norm II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1117-1132. doi: 10.3934/cpaa.2009.8.1117

[17]

Donglei Du, Tianping Shuai. Errata to:''Optimal preemptive online scheduling to minimize $l_{p}$ norm on two processors''[Journal of Industrial and Management Optimization, 1(3) (2005), 345-351.]. Journal of Industrial & Management Optimization, 2008, 4 (2) : 339-341. doi: 10.3934/jimo.2008.4.339

[18]

Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004

[19]

Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control & Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019

[20]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]