-
Previous Article
Stochastic programming approach for energy management in electric microgrids
- NACO Home
- This Issue
-
Next Article
Two-step methods for image zooming using duality strategies
Sparse inverse incidence matrices for Schilders' factorization applied to resistor network modeling
1. | Center for Analysis, Scientific Computing and Applications, Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands, Netherlands, Netherlands |
References:
[1] |
R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory,, 2nd edition, (2012).
doi: 10.1007/978-1-4614-4529-6. |
[2] |
R. B. Bapat, Graphs and Matrices,, Hindustan Book Agency, (2010).
doi: 10.1007/978-1-84882-981-7. |
[3] |
G. Chartrand and L. Lesniak, Graphs and Digraphs,, 3rd edition, (1996).
|
[4] |
Z. Lijang, A matrix solution to Hamiltonian path of any graph,, International conference on intelligent computing and cognitive informatics, (2010). Google Scholar |
[5] |
J. Rommes and W. H. A. Schilders, Efficient methods for large resistor networks,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29 (2010), 28. Google Scholar |
[6] |
Y. Saad, Preconditioning techniques for nonsymetric and indefinite linear systems,, Journal of Computational and Applied Mathematics, 24 (1988), 89.
doi: 10.1016/0377-0427(88)90345-7. |
[7] |
W. H. A. Schilders, Solution of indefinite linear systems using an LQ decomosition for the linear constraints,, Linear Algebra and Applications, 431 (2009), 381.
doi: 10.1016/j.laa.2009.02.036. |
[8] |
R. Vandebril, M. V. Barel and N. Mastronardi, Matrix Computations and Semiseparable Matrices,, The Johns Hopkins University Press, (). Google Scholar |
show all references
References:
[1] |
R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory,, 2nd edition, (2012).
doi: 10.1007/978-1-4614-4529-6. |
[2] |
R. B. Bapat, Graphs and Matrices,, Hindustan Book Agency, (2010).
doi: 10.1007/978-1-84882-981-7. |
[3] |
G. Chartrand and L. Lesniak, Graphs and Digraphs,, 3rd edition, (1996).
|
[4] |
Z. Lijang, A matrix solution to Hamiltonian path of any graph,, International conference on intelligent computing and cognitive informatics, (2010). Google Scholar |
[5] |
J. Rommes and W. H. A. Schilders, Efficient methods for large resistor networks,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29 (2010), 28. Google Scholar |
[6] |
Y. Saad, Preconditioning techniques for nonsymetric and indefinite linear systems,, Journal of Computational and Applied Mathematics, 24 (1988), 89.
doi: 10.1016/0377-0427(88)90345-7. |
[7] |
W. H. A. Schilders, Solution of indefinite linear systems using an LQ decomosition for the linear constraints,, Linear Algebra and Applications, 431 (2009), 381.
doi: 10.1016/j.laa.2009.02.036. |
[8] |
R. Vandebril, M. V. Barel and N. Mastronardi, Matrix Computations and Semiseparable Matrices,, The Johns Hopkins University Press, (). Google Scholar |
[1] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[2] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[3] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[4] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[5] |
Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123 |
[6] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[7] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[8] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[9] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[10] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[11] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[12] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[13] |
Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020356 |
[14] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[15] |
Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020358 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]