Citation: |
[1] |
Cbc (Coin-or Branch and Cut) Solver, Available from: https://projects.coin-or.org/Cbc. |
[2] |
Embest Technology Co.,LTD, Available from: http://www.armkits.com/product/sbc6020.asp. |
[3] |
Microgrids at Berkeley Lab, Available from: http://building-microgrid.lbl.gov/. |
[4] |
Raspberry Pi Embedded Computer, Available from: http://www.raspberrypi.org/. |
[5] |
Sun blade 1000 and sun blade 2000 product notes, Available from: http://docs.oracle.com/cd/E19127-01/blade1000.ws/816-3219-16/816-3219-16.pdf. , 19127 |
[6] |
Lithium-ion batteries - The bubble bursts,'' Case study Roland Berger Strategy Consultants, 2012. Available from: http://www.rolandberger.de/media/pdf/Roland_Berger_Li_Ion_Batteries_Bubble_Bursts_20121019.pdf. |
[7] |
Medium-term renewable energy market report 2013,, Report of International Energy Agency, (2013).
|
[8] |
W. Bernhart, Powertrain 2020. The Li-Ion Battery Value Chain - Trends and implications, Case study Roland Berger Strategy Consultants, 2011. Available from: http://www.rolandberger.com/media/pdf/Roland_Berger_The_Li_Ion_Battery_Value_Chain_20110801.pdf. |
[9] |
J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer series in operations research and financial engineering, Springer, 2011.doi: 10.1007/978-1-4614-0237-4. |
[10] |
P. Bishnoi, W. Klein, R. Kuntschke, R. Speh and M. W. Waszak, A Disruptive Approach for a Green Field Smart Grid Installation, in "VDE Kongress 2012 Smart Grid'', 2012. |
[11] |
B. Burger, Electricity Production From Solar and Wind in Germany in 2013, Technical report, Fraunhofer Institute for Solar Energy Systems ISE, 2013. |
[12] |
G. Cardoso, M. Stadler, A. Siddiqui, C. Marnay, N. DeForest, A. Barbosa-Póvoa, and P. Ferrão, Microgrid reliability modeling and battery scheduling using stochastic linear programming, Electric Power Systems Research, 103 (2013), 61-69. |
[13] |
G. B. Dantzig, Linear programming under uncertainty, Management Science, 50 (2004), 1764-1769. |
[14] |
J. Dupačová, N. Gröwe-Kuska and W. Römisch, Scenario reduction in stochastic programming, Mathematical Programming, 95 (2003), 493-511.doi: 10.1007/s10107-002-0331-0. |
[15] |
C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming, Operations Research Letters, 24 (1997), 37-45.doi: 10.1016/S0167-6377(98)00050-9. |
[16] |
D. Gade, G. Hackebeil, S. M. Ryan, J. P. Watson, R. J. B. Wets and D. L. Woodruff, Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs, Sandia Technical report, 2013. |
[17] |
N. Gröwe-Kuska, H. Heitsch, and W. Römisch, Scenario reduction and scenario tree construction for power management problems, in Power Tech Conference Proceedings, 2003 IEEE Bologna, IEEE, 3 (2003), 7-pp. |
[18] |
W. E. Hart, C. Laird, J. P. Watson and D. L. Woodruff, Pyomo - Optimization Modeling in Python, Springer, 2012. |
[19] |
N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, Microgrids, Power and Energy Magazine, 5 (2007), 78-94. |
[20] |
A. M. Gleixner, H. Held, W. Huang and S. Vigerske, Towards globally optimal operation of water supply networks, Numer. Algebra Control Optim., 2 (2012), 695-711.doi: 10.3934/naco.2012.2.695. |
[21] |
H. Jiayi, J. Chuanwen and X. Rong, A review on distributed energy resources and microgrid, Renewable and Sustainable Energy Reviews, 12 (2008). 2472-2483. |
[22] |
J. J. Justo, F. Mwasilu, J. Lee and J. W. Jung, AC-microgrids versus DC-microgrids with distributed energy resources: A review, Renewable and Sustainable Energy Reviews, 24 (2013), 387-405. |
[23] |
M. Kaut and S. W. Wallace, Evaluation of scenario-generation methods for stochastic programming, Pacific Journal of Optimization, 3 (2007), 257-271. |
[24] |
G. Martinez, N. Gatsis and G. B. Giannakis, Stochastic programming for energy planning in microgrids with renewables, in Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013 IEEE 5th International Workshop, IEEE, (2013), 472-475. |
[25] |
S. Mitra, A white paper on scenario generation for stochastic programming, White paper, 2006. |
[26] |
T. Niknam, R. Azizipanah-Abarghooee and M. R. Narimani, An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation, Applied Energy, 99 (2012), 455-470. |
[27] |
A. Parisio and L. Glielmo, Stochastic model predictive control for economic/environmental operation management of microgrids, in 2013 European Control Conference (ECC), (2013), 2014-2019. |
[28] |
R. T. Rockafellar and R. J. B. Wets, Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res., 16 (1991), 119-147.doi: 10.1287/moor.16.1.119. |
[29] |
M. Riis and R. Schultz, Applying the minimum risk criterion in stochastic recourse programs, Computational Optimization and Applications, 24 (2003), 267-287.doi: 10.1023/A:1021862109131. |
[30] |
W. Römisch, Scenario generation, in Wiley Encyclopedia of Operations Research and Management Science, Wiley'' 2011. |
[31] |
C. Sagastizábal, Divide to conquer: decomposition methods for energy optimization, Math. Program., 134 (2012), 187-222.doi: 10.1007/s10107-012-0570-7. |
[32] |
A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming. Modeling and Theory, MPS/SIAM Series on Optimization, 9, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), Mathematical Programming Society (MPS), Philadelphia, 2009.doi: 10.1137/1.9780898718751. |
[33] |
W. Su, J. Wang and J. Roh, Stochastic energy scheduling in microgrids with intermittent renewable energy resources, Smart Grid, IEEE Transactions on, 99 (2013), 1-9. |
[34] |
J. P. Watson and D. L. Woodruff, Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems, Computational Management Science, 8 (2011), 355-370.doi: 10.1007/s10287-010-0125-4. |
[35] |
J. P. Watson, D. L. Woodruff and W. E. Hart, PySP: modeling and solving stochastic programs in Python, Mathematical Programming Computation, 4 (2012), 109-149.doi: 10.1007/s12532-012-0036-1. |
[36] |
Y. Zhou, H. Held, W. Klein, K. Majewski, R. Speh, P. E. Stelzig and C. Wincheringer, SoftGrid: A green field approach of future smart grid, in 2nd International Conference on Smart Grids and Green IT Systems (SMARTGREENS 2013), 2013. |