\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Strong convergence of an implicit iteration process for a finite family of Lipschitz $\phi -$uniformly pseudocontractive mappings in Banach spaces

Abstract / Introduction Related Papers Cited by
  • The purpose of this paper is to establish a strong convergence of an implicit iteration process to a common fixed point for a finite family of Lipschitz $\phi-$uniformly pseudocontractive mappings in real Banach spaces. The results presented here improve and extend the corresponding results in [2, 4, 6] and the consecutive remark explains in details about the facts.
    Mathematics Subject Classification: Primary: 47H10, 47H17; Secondary: 54H25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal., Appl., 20 (1967), 197-228.

    [2]

    R. Chen, P. K. Lin and Y. Dong, An approximation method for strictly pseudocontractive mappings, Nonlinear Analysis (TMA), 64 (2006), 2527-2535.doi: 10.1016/j.na.2005.08.031.

    [3]

    C. Moore and B. V. C. Nnoli, Iterative solution of nonlinear equations involving set-valued uniformly accretive operators, Computers Math. Applic, 42 (2001), 131-140.doi: 10.1016/S0898-1221(01)00138-9.

    [4]

    M. O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal., 294 (2004), 73-81.doi: 10.1016/j.jmaa.2004.01.038.

    [5]

    H. K. Xu, Inequality in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.doi: 10.1016/0362-546X(91)90200-K.

    [6]

    H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal., Optim., 22 (2001), 767-773.doi: 10.1081/NFA-100105317.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return