Citation: |
[1] |
L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008), 24-42.doi: 10.1080/01630560701873068. |
[2] |
L. Q. Anh, P. Q. Khanh and T. N. Tam, On Hölder continuity of approximate solutions to parametric equilibrium problems, Nonlinear Anal., 75 (2012), 2293-2303.doi: 10.1016/j.na.2011.10.029. |
[3] |
L. Q. Anh and P. Q. Khanh, On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems, J. Math. Anal. Appl., 321 (2006), 308-315.doi: 10.1016/j.jmaa.2005.08.018. |
[4] |
L. Q. Anh and P. Q. Khanh, Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces, J. Global Optim., 37 (2007), 449-465.doi: 10.1007/s10898-006-9062-8. |
[5] |
L. Q. Anh and P. Q. Khanh, Sensitivity analysis for multivalued quasiequilibrium problems in metric spaces: Hölder continuity of solutions, J. Global Optim., 42 (2008), 515-531.doi: 10.1007/s10898-007-9268-4. |
[6] |
Q. H. Ansari and J. C. Yao (eds.), Recent Developments in Vector Optimization, Springer, Berlin, 2012.doi: 10.1007/978-3-642-21114-0. |
[7] |
M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria, Optimization, 55 (2006), 221-230.doi: 10.1080/02331930600662732. |
[8] |
C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim., 45 (2009), 309-318.doi: 10.1007/s10898-008-9376-9. |
[9] |
C. R. Chen and S. J. Li, Semicontinuity results on parametric vector variational inequalities with polyhedral constraint sets, J. Optim. Theory Appl., 158 (2013), 97-108.doi: 10.1007/s10957-012-0199-y. |
[10] |
C. R. Chen, Hölder continuity of the unique solution to parametric vector quasiequilibrium problems via nonlinear scalarization, Positivity, 17 (2013), 133-150.doi: 10.1007/s11117-011-0153-5. |
[11] |
C. R. Chen and M. H. Li, Hölder continuity of solutions to parametric vector equilibrium problems with nonlinear scalarization, Numer. Funct. Anal. Optim., 35 (2014), 685-707.doi: 10.1080/01630563.2013.818549. |
[12] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis, Springer, Berlin, 2005. |
[13] |
M. Durea and R. Strugariu, Scalarization of constraints system in some vector optimization problems and applications, Optim. Lett., 8 (2014), 2021-2037.doi: 10.1007/s11590-013-0690-x. |
[14] |
M. Durea and C. Tammer, Fuzzy necessary optimality conditions for vector optimization problems, Optimization, 58 (2009), 449-467.doi: 10.1080/02331930701761615. |
[15] |
Chr. Gerstewitz (Tammer), Nichtkonvexe Dualität in der Vektoroptimierung, Wiss. Z. TH Leuna-Merseburg, 25 (1983), 357-364. |
[16] |
X. H. Gong and J. C. Yao, Connectedness of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 189-196.doi: 10.1007/s10957-008-9378-2. |
[17] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 197-205.doi: 10.1007/s10957-008-9379-1. |
[18] |
A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003. |
[19] |
J. B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res., 4 (1979), 79-97.doi: 10.1287/moor.4.1.79. |
[20] |
K. Kimura and J. C. Yao, Semicontinuity of solution mappings of parametric generalized vector equilibrium problems, J. Optim. Theory Appl., 138 (2008), 429-443.doi: 10.1007/s10957-008-9386-2. |
[21] |
M. H. Li, S. J. Li and C. R. Chen, Hölder-likeness and contingent derivative of solutions to parametric weak vector equilibrium problems (in Chinese), Sci. Sin. Math., 43 (2013), 61-74. |
[22] |
S. J. Li, X. B. Li, L. N. Wang and K. L. Teo, The Hölder continuity of solutions to generalized vector equilibrium problems, European J. Oper. Res., 199 (2009), 334-338.doi: 10.1016/j.ejor.2008.12.024. |
[23] |
S. J. Li, C. R. Chen, X. B. Li and K. L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems, European J. Oper. Res., 210 (2011), 148-157.doi: 10.1016/j.ejor.2010.10.005. |
[24] |
S. J. Li and X. B. Li, Hölder continuity of solutions to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 149 (2011), 540-553.doi: 10.1007/s10957-011-9803-9. |
[25] |
X. B. Li, S. J. Li and C. R. Chen, Lipschitz continuity of an approximate solution mapping to equilibrium problems, Taiwanese J. Math., 16 (2012), 1027-1040. |
[26] |
F. Lu and C. R. Chen, Notes on Lipschitz properties of nonlinear scalarization functions with applications, Abstr. Appl. Anal., 2014 (2014), Article ID 792364, 10 pages.doi: 10.1155/2014/792364. |
[27] |
F. Lu and C. R. Chen, Newton-like methods for solving vector optimization problems, Appl. Anal., 93 (2014), 1567-1586.doi: 10.1080/00036811.2013.839781. |
[28] |
N. M. Nam and C. Zălinescu, Variational analysis of directional minimal time functions and applications to location problems, Set-Valued Var. Anal., 21 (2013), 405-430.doi: 10.1007/s11228-013-0232-9. |
[29] |
C. Tammer and C. Zălinescu, Lipschitz properties of the scalarization function and applications, Optimization, 59 (2010), 305-319.doi: 10.1080/02331930801951033. |
[30] |
A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim., 42 (2003), 1071-1086.doi: 10.1137/S0363012902411532. |