• Previous Article
    A note on the stability of a second order finite difference scheme for space fractional diffusion equations
  • NACO Home
  • This Issue
  • Next Article
    Nonlinear scalarization with applications to Hölder continuity of approximate solutions
2014, 4(4): 309-316. doi: 10.3934/naco.2014.4.309

Topological properties of Henig globally efficient solutions of set-valued problems

1. 

Institute of Applied Mathematics, Beifang University of Nationalities, Yinchuan 750021, China

Received  March 2013 Revised  October 2014 Published  December 2014

This paper deals with the topological properties of Henig globally efficiency in vector optimization problem with set-valued mapping. The closednesst and compactness results are presented for Henig globally efficiency, Especially, under the assumption of ic-cone-convexlikeness, the connectedness of Henig globally efficient set is obtained. As the application of the results, the relevant topological properties of Benson proper efficiency are also presented.
Citation: Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309
References:
[1]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis. Wiley, New York, 1984. doi: 10.1007/978-1-4612-0873-0.

[2]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones, Journal of Mathematical Analysis and Applications, 71 (1979), 232-241. doi: 10.1016/0022-247X(79)90226-9.

[3]

J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization, Trans. Amer. Math. Soc., 338 (1993), 105-122. doi: 10.2307/2154446.

[4]

H. W. Corley, Optimality conditions for maximizations of set-valued functions, Journal of Optimization Theory and Applications, 54 (1987), 489-501. doi: 10.1007/BF00940198.

[5]

X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior, Journal of Mathematical Analysis and Applications, 307 (2005), 12-31. doi: 10.1016/j.jmaa.2004.10.001.

[6]

X. H. Gong, Connectedness of super efficient solution sets for set-valued maps in Banach spaces, Mathematical Methods of Operation Research, 44 (1996), 135-145. doi: 10.1007/BF01246333.

[7]

X. H. Gong, Connectedness of efficient solution sets for set-valued maps in normed spaces, Journal of Optimization Theory and Applications, 83 (1994), 83-96. doi: 10.1007/BF02191763.

[8]

X. H. Gong, H. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization, Journal of Mathematical Analysis and Applications, 284 (2003), 332-350. doi: 10.1016/S0022-247X(03)00360-3.

[9]

M. I. Henig, Proper efficiency with respect to cones, Journal of Optimization Theory and Applications, 36 (1982), 387-407. doi: 10.1007/BF00934353.

[10]

J. B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, Journal of Mathematical Analysis and Applications, 111 (1985), 407-422. doi: 10.1016/0022-247X(85)90225-2.

[11]

Z. F. Li, Benson proper efficiency in the vector optimization of set-valued maps, Journal of Optimization Theory and Applications, 98 (1998), 623-649. doi: 10.1023/A:1022676013609.

[12]

Y. X. Li, Topological structure of efficient set of optimization problem so set-valued mapping, Chinese Annals of Mathematics, 15B (1994), 115-122.

[13]

Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps, Mathematical Methods of Operation Research, 48 (1998), 207-217. doi: 10.1007/s001860050023.

[14]

Z. F. Li and G, Y, Chen, Lagrangian multipliers, saddle points and duality in vector optimizaition of set-valued maps, Journal of Mathematical Analysis and Applications, 215 (1997), 297-316. doi: 10.1006/jmaa.1997.5568.

[15]

P. H. Naccache, Connectedness of the set of nondominated outcomes in multicriteria optimization, Journal of Optimization Theory and Applications, 25 (1978), 459-467. doi: 10.1007/BF00932907.

[16]

Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems, Journal of Optimization Theory and Applications, 152 (2012), 439-449. doi: 10.1007/s10957-011-9906-3.

[17]

P. H. Sach, New generalized convexity notion for set-valued maps and application to vector optimization, Journal of Optimization Theory and Applications, 125 (2005), 157-179. doi: 10.1007/s10957-004-1716-4.

[18]

W. Song, Lagrangian duality for minimization of nonconvex multifunctions, Journal of Optimization Theory and Applications, 93 (1997), 167-182. doi: 10.1023/A:1022658019642.

[19]

A. R. Warburton, Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives, Journal of Optimization Theory and Applications, 140 (1983), 537-557. doi: 10.1007/BF00933970.

[20]

Yihong Xu and Xiaoshuai Song, The relationship between ic-cone-convexness and nearly cone-subconvexlikeness, Applied Mathematics Letters, 24 (2011), 1622-1624. doi: 10.1016/j.aml.2011.04.018.

[21]

X. M. Yang, X. Q. Yang and G. Y. Cheng, Theorems of the alternative and optimization with set-valued maps, Journal of Optimization Theory and Applications, 107 (2000), 627-640. doi: 10.1023/A:1004613630675.

[22]

Guolin Yu and Sanyang Liu, Optimality conditions of globally proper efficient solutions for set-valued optimization problem, Acta Mathematicae Applicatae Sinica, 33 (2010), 150-160.

[23]

Guolin Yu and Sanyang Liu, Globally proper saddle point in ic-cone-convexlike set-valued optimization problems, Act Mathematica Sinica (English Series), 25 (2009), 1921-1928. doi: 10.1007/s10114-009-6144-9.

show all references

References:
[1]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis. Wiley, New York, 1984. doi: 10.1007/978-1-4612-0873-0.

[2]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones, Journal of Mathematical Analysis and Applications, 71 (1979), 232-241. doi: 10.1016/0022-247X(79)90226-9.

[3]

J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization, Trans. Amer. Math. Soc., 338 (1993), 105-122. doi: 10.2307/2154446.

[4]

H. W. Corley, Optimality conditions for maximizations of set-valued functions, Journal of Optimization Theory and Applications, 54 (1987), 489-501. doi: 10.1007/BF00940198.

[5]

X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior, Journal of Mathematical Analysis and Applications, 307 (2005), 12-31. doi: 10.1016/j.jmaa.2004.10.001.

[6]

X. H. Gong, Connectedness of super efficient solution sets for set-valued maps in Banach spaces, Mathematical Methods of Operation Research, 44 (1996), 135-145. doi: 10.1007/BF01246333.

[7]

X. H. Gong, Connectedness of efficient solution sets for set-valued maps in normed spaces, Journal of Optimization Theory and Applications, 83 (1994), 83-96. doi: 10.1007/BF02191763.

[8]

X. H. Gong, H. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization, Journal of Mathematical Analysis and Applications, 284 (2003), 332-350. doi: 10.1016/S0022-247X(03)00360-3.

[9]

M. I. Henig, Proper efficiency with respect to cones, Journal of Optimization Theory and Applications, 36 (1982), 387-407. doi: 10.1007/BF00934353.

[10]

J. B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, Journal of Mathematical Analysis and Applications, 111 (1985), 407-422. doi: 10.1016/0022-247X(85)90225-2.

[11]

Z. F. Li, Benson proper efficiency in the vector optimization of set-valued maps, Journal of Optimization Theory and Applications, 98 (1998), 623-649. doi: 10.1023/A:1022676013609.

[12]

Y. X. Li, Topological structure of efficient set of optimization problem so set-valued mapping, Chinese Annals of Mathematics, 15B (1994), 115-122.

[13]

Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps, Mathematical Methods of Operation Research, 48 (1998), 207-217. doi: 10.1007/s001860050023.

[14]

Z. F. Li and G, Y, Chen, Lagrangian multipliers, saddle points and duality in vector optimizaition of set-valued maps, Journal of Mathematical Analysis and Applications, 215 (1997), 297-316. doi: 10.1006/jmaa.1997.5568.

[15]

P. H. Naccache, Connectedness of the set of nondominated outcomes in multicriteria optimization, Journal of Optimization Theory and Applications, 25 (1978), 459-467. doi: 10.1007/BF00932907.

[16]

Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems, Journal of Optimization Theory and Applications, 152 (2012), 439-449. doi: 10.1007/s10957-011-9906-3.

[17]

P. H. Sach, New generalized convexity notion for set-valued maps and application to vector optimization, Journal of Optimization Theory and Applications, 125 (2005), 157-179. doi: 10.1007/s10957-004-1716-4.

[18]

W. Song, Lagrangian duality for minimization of nonconvex multifunctions, Journal of Optimization Theory and Applications, 93 (1997), 167-182. doi: 10.1023/A:1022658019642.

[19]

A. R. Warburton, Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives, Journal of Optimization Theory and Applications, 140 (1983), 537-557. doi: 10.1007/BF00933970.

[20]

Yihong Xu and Xiaoshuai Song, The relationship between ic-cone-convexness and nearly cone-subconvexlikeness, Applied Mathematics Letters, 24 (2011), 1622-1624. doi: 10.1016/j.aml.2011.04.018.

[21]

X. M. Yang, X. Q. Yang and G. Y. Cheng, Theorems of the alternative and optimization with set-valued maps, Journal of Optimization Theory and Applications, 107 (2000), 627-640. doi: 10.1023/A:1004613630675.

[22]

Guolin Yu and Sanyang Liu, Optimality conditions of globally proper efficient solutions for set-valued optimization problem, Acta Mathematicae Applicatae Sinica, 33 (2010), 150-160.

[23]

Guolin Yu and Sanyang Liu, Globally proper saddle point in ic-cone-convexlike set-valued optimization problems, Act Mathematica Sinica (English Series), 25 (2009), 1921-1928. doi: 10.1007/s10114-009-6144-9.

[1]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[2]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial and Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[3]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[4]

Kequan Zhao, Xinmin Yang. Characterizations of the $E$-Benson proper efficiency in vector optimization problems. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 643-653. doi: 10.3934/naco.2013.3.643

[5]

Marius Durea, Elena-Andreea Florea, Radu Strugariu. Henig proper efficiency in vector optimization with variable ordering structure. Journal of Industrial and Management Optimization, 2019, 15 (2) : 791-815. doi: 10.3934/jimo.2018071

[6]

Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031

[7]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[8]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[9]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[10]

Hong-Zhi Wei, Chun-Rong Chen. Three concepts of robust efficiency for uncertain multiobjective optimization problems via set order relations. Journal of Industrial and Management Optimization, 2019, 15 (2) : 705-721. doi: 10.3934/jimo.2018066

[11]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial and Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[12]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

[13]

T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269

[14]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[15]

Kendry J. Vivas, Víctor F. Sirvent. Metric entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022010

[16]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial and Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[17]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[18]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[19]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control and Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[20]

Michele Campiti. Korovkin-type approximation of set-valued and vector-valued functions. Mathematical Foundations of Computing, 2022, 5 (3) : 231-239. doi: 10.3934/mfc.2021032

 Impact Factor: 

Metrics

  • PDF downloads (149)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]