• Previous Article
    A note on the stability of a second order finite difference scheme for space fractional diffusion equations
  • NACO Home
  • This Issue
  • Next Article
    Nonlinear scalarization with applications to Hölder continuity of approximate solutions
2014, 4(4): 309-316. doi: 10.3934/naco.2014.4.309

Topological properties of Henig globally efficient solutions of set-valued problems

1. 

Institute of Applied Mathematics, Beifang University of Nationalities, Yinchuan 750021, China

Received  March 2013 Revised  October 2014 Published  December 2014

This paper deals with the topological properties of Henig globally efficiency in vector optimization problem with set-valued mapping. The closednesst and compactness results are presented for Henig globally efficiency, Especially, under the assumption of ic-cone-convexlikeness, the connectedness of Henig globally efficient set is obtained. As the application of the results, the relevant topological properties of Benson proper efficiency are also presented.
Citation: Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309
References:
[1]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis., Wiley, (1984).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[2]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, Journal of Mathematical Analysis and Applications, 71 (1979), 232.  doi: 10.1016/0022-247X(79)90226-9.  Google Scholar

[3]

J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization,, Trans. Amer. Math. Soc., 338 (1993), 105.  doi: 10.2307/2154446.  Google Scholar

[4]

H. W. Corley, Optimality conditions for maximizations of set-valued functions,, Journal of Optimization Theory and Applications, 54 (1987), 489.  doi: 10.1007/BF00940198.  Google Scholar

[5]

X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior,, Journal of Mathematical Analysis and Applications, 307 (2005), 12.  doi: 10.1016/j.jmaa.2004.10.001.  Google Scholar

[6]

X. H. Gong, Connectedness of super efficient solution sets for set-valued maps in Banach spaces,, Mathematical Methods of Operation Research, 44 (1996), 135.  doi: 10.1007/BF01246333.  Google Scholar

[7]

X. H. Gong, Connectedness of efficient solution sets for set-valued maps in normed spaces,, Journal of Optimization Theory and Applications, 83 (1994), 83.  doi: 10.1007/BF02191763.  Google Scholar

[8]

X. H. Gong, H. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization,, Journal of Mathematical Analysis and Applications, 284 (2003), 332.  doi: 10.1016/S0022-247X(03)00360-3.  Google Scholar

[9]

M. I. Henig, Proper efficiency with respect to cones,, Journal of Optimization Theory and Applications, 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[10]

J. B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions,, Journal of Mathematical Analysis and Applications, 111 (1985), 407.  doi: 10.1016/0022-247X(85)90225-2.  Google Scholar

[11]

Z. F. Li, Benson proper efficiency in the vector optimization of set-valued maps,, Journal of Optimization Theory and Applications, 98 (1998), 623.  doi: 10.1023/A:1022676013609.  Google Scholar

[12]

Y. X. Li, Topological structure of efficient set of optimization problem so set-valued mapping,, Chinese Annals of Mathematics, 15B (1994), 115.   Google Scholar

[13]

Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps,, Mathematical Methods of Operation Research, 48 (1998), 207.  doi: 10.1007/s001860050023.  Google Scholar

[14]

Z. F. Li and G, Y, Chen, Lagrangian multipliers, saddle points and duality in vector optimizaition of set-valued maps,, Journal of Mathematical Analysis and Applications, 215 (1997), 297.  doi: 10.1006/jmaa.1997.5568.  Google Scholar

[15]

P. H. Naccache, Connectedness of the set of nondominated outcomes in multicriteria optimization,, Journal of Optimization Theory and Applications, 25 (1978), 459.  doi: 10.1007/BF00932907.  Google Scholar

[16]

Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems,, \emph{Journal of Optimization Theory and Applications}, 152 (2012), 439.  doi: 10.1007/s10957-011-9906-3.  Google Scholar

[17]

P. H. Sach, New generalized convexity notion for set-valued maps and application to vector optimization,, Journal of Optimization Theory and Applications, 125 (2005), 157.  doi: 10.1007/s10957-004-1716-4.  Google Scholar

[18]

W. Song, Lagrangian duality for minimization of nonconvex multifunctions,, Journal of Optimization Theory and Applications, 93 (1997), 167.  doi: 10.1023/A:1022658019642.  Google Scholar

[19]

A. R. Warburton, Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives,, Journal of Optimization Theory and Applications, 140 (1983), 537.  doi: 10.1007/BF00933970.  Google Scholar

[20]

Yihong Xu and Xiaoshuai Song, The relationship between ic-cone-convexness and nearly cone-subconvexlikeness,, Applied Mathematics Letters, 24 (2011), 1622.  doi: 10.1016/j.aml.2011.04.018.  Google Scholar

[21]

X. M. Yang, X. Q. Yang and G. Y. Cheng, Theorems of the alternative and optimization with set-valued maps,, Journal of Optimization Theory and Applications, 107 (2000), 627.  doi: 10.1023/A:1004613630675.  Google Scholar

[22]

Guolin Yu and Sanyang Liu, Optimality conditions of globally proper efficient solutions for set-valued optimization problem,, Acta Mathematicae Applicatae Sinica, 33 (2010), 150.   Google Scholar

[23]

Guolin Yu and Sanyang Liu, Globally proper saddle point in ic-cone-convexlike set-valued optimization problems,, Act Mathematica Sinica (English Series), 25 (2009), 1921.  doi: 10.1007/s10114-009-6144-9.  Google Scholar

show all references

References:
[1]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis., Wiley, (1984).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[2]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, Journal of Mathematical Analysis and Applications, 71 (1979), 232.  doi: 10.1016/0022-247X(79)90226-9.  Google Scholar

[3]

J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimization,, Trans. Amer. Math. Soc., 338 (1993), 105.  doi: 10.2307/2154446.  Google Scholar

[4]

H. W. Corley, Optimality conditions for maximizations of set-valued functions,, Journal of Optimization Theory and Applications, 54 (1987), 489.  doi: 10.1007/BF00940198.  Google Scholar

[5]

X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior,, Journal of Mathematical Analysis and Applications, 307 (2005), 12.  doi: 10.1016/j.jmaa.2004.10.001.  Google Scholar

[6]

X. H. Gong, Connectedness of super efficient solution sets for set-valued maps in Banach spaces,, Mathematical Methods of Operation Research, 44 (1996), 135.  doi: 10.1007/BF01246333.  Google Scholar

[7]

X. H. Gong, Connectedness of efficient solution sets for set-valued maps in normed spaces,, Journal of Optimization Theory and Applications, 83 (1994), 83.  doi: 10.1007/BF02191763.  Google Scholar

[8]

X. H. Gong, H. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization,, Journal of Mathematical Analysis and Applications, 284 (2003), 332.  doi: 10.1016/S0022-247X(03)00360-3.  Google Scholar

[9]

M. I. Henig, Proper efficiency with respect to cones,, Journal of Optimization Theory and Applications, 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[10]

J. B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions,, Journal of Mathematical Analysis and Applications, 111 (1985), 407.  doi: 10.1016/0022-247X(85)90225-2.  Google Scholar

[11]

Z. F. Li, Benson proper efficiency in the vector optimization of set-valued maps,, Journal of Optimization Theory and Applications, 98 (1998), 623.  doi: 10.1023/A:1022676013609.  Google Scholar

[12]

Y. X. Li, Topological structure of efficient set of optimization problem so set-valued mapping,, Chinese Annals of Mathematics, 15B (1994), 115.   Google Scholar

[13]

Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps,, Mathematical Methods of Operation Research, 48 (1998), 207.  doi: 10.1007/s001860050023.  Google Scholar

[14]

Z. F. Li and G, Y, Chen, Lagrangian multipliers, saddle points and duality in vector optimizaition of set-valued maps,, Journal of Mathematical Analysis and Applications, 215 (1997), 297.  doi: 10.1006/jmaa.1997.5568.  Google Scholar

[15]

P. H. Naccache, Connectedness of the set of nondominated outcomes in multicriteria optimization,, Journal of Optimization Theory and Applications, 25 (1978), 459.  doi: 10.1007/BF00932907.  Google Scholar

[16]

Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems,, \emph{Journal of Optimization Theory and Applications}, 152 (2012), 439.  doi: 10.1007/s10957-011-9906-3.  Google Scholar

[17]

P. H. Sach, New generalized convexity notion for set-valued maps and application to vector optimization,, Journal of Optimization Theory and Applications, 125 (2005), 157.  doi: 10.1007/s10957-004-1716-4.  Google Scholar

[18]

W. Song, Lagrangian duality for minimization of nonconvex multifunctions,, Journal of Optimization Theory and Applications, 93 (1997), 167.  doi: 10.1023/A:1022658019642.  Google Scholar

[19]

A. R. Warburton, Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives,, Journal of Optimization Theory and Applications, 140 (1983), 537.  doi: 10.1007/BF00933970.  Google Scholar

[20]

Yihong Xu and Xiaoshuai Song, The relationship between ic-cone-convexness and nearly cone-subconvexlikeness,, Applied Mathematics Letters, 24 (2011), 1622.  doi: 10.1016/j.aml.2011.04.018.  Google Scholar

[21]

X. M. Yang, X. Q. Yang and G. Y. Cheng, Theorems of the alternative and optimization with set-valued maps,, Journal of Optimization Theory and Applications, 107 (2000), 627.  doi: 10.1023/A:1004613630675.  Google Scholar

[22]

Guolin Yu and Sanyang Liu, Optimality conditions of globally proper efficient solutions for set-valued optimization problem,, Acta Mathematicae Applicatae Sinica, 33 (2010), 150.   Google Scholar

[23]

Guolin Yu and Sanyang Liu, Globally proper saddle point in ic-cone-convexlike set-valued optimization problems,, Act Mathematica Sinica (English Series), 25 (2009), 1921.  doi: 10.1007/s10114-009-6144-9.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[5]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[6]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[7]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[10]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[11]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[15]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[16]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[17]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[18]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[19]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[20]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

 Impact Factor: 

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]