Citation: |
[1] |
C. Celik and M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2011), 1743-1750.doi: 10.1016/j.jcp.2011.11.008. |
[2] |
M. Chen and W. Deng, Fourth order accurate scheme for the space fractional diffusion equations, SIAM J Numer. Anal., 52 (2013), 1418-1438.doi: 10.1137/130933447. |
[3] |
M. Chen, W. Deng and Y. Wu, Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation, Appl. Numer. math., 70 (2013), 22-41.doi: 10.1016/j.apnum.2013.03.006. |
[4] |
W. Chen and S. Wang, A finite difference method for pricing European and American options under a geometric Levy process, J. Ind. Manag. Optim., 11 (2015), 241-264.doi: 10.3934/jimo.2015.11.241. |
[5] |
W. Deng and M. Chen, Efficient numerical algorithms for three-dimensional fractional partial differential equations, Journal of Computational Mathematics, 32 (2014), 371-391.doi: 10.4208/jcm.1401-m3893. |
[6] |
R. Horn and C. Johnson, Topics on Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991. |
[7] |
S. Lei and H. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242 (2013), 715-725.doi: 10.1016/j.jcp.2013.02.025. |
[8] |
M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), 65-77.doi: 10.1016/j.cam.2004.01.033. |
[9] |
M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90.doi: 10.1016/j.apnum.2005.02.008. |
[10] |
H. Pang and H. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231 (2012), 693-703.doi: 10.1016/j.jcp.2011.10.005. |
[11] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[12] |
E. Sousa and C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Applied Numerical Mathematics, to appear. doi: 10.1016/j.apnum.2014.11.007. |
[13] |
E. Sousa, A second order explicit finite difference method for the fractional advection diffusion equation, Comput. Math. Appl., 64 (2012), 3141-3152.doi: 10.1016/j.camwa.2012.03.002. |
[14] |
C. Tadjeran, M. M. Meerschaert and H. P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), 205-213.doi: 10.1016/j.jcp.2005.08.008. |
[15] |
C. Tadjeran and M.M. Meerschaert, A second-order accurate numerical approximation for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), 813-823.doi: 10.1016/j.jcp.2006.05.030. |
[16] |
W. Tian, H. Zhou and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., arXiv:1201.5949 [math.NA]. |
[17] |
H. Wang and N. Du, A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation, J. Comput. Phys., 253 (2013), 50-63.doi: 10.1016/j.jcp.2013.06.040. |
[18] |
H. Wang, K. Wang and T. Sircar, A direct O(N log2N) finite difference method for fractional diffusion equations, J. Comput. Phys., 229 (2010), 8095-8104.doi: 10.1016/j.jcp.2010.07.011. |
[19] |
H. Wang and K. Wang, An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations, J. Comput. Phys., 230 (2011), 7830-7839.doi: 10.1016/j.jcp.2011.07.003. |
[20] |
H. Wang and T. S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 34 (2012), A2444-A2458.doi: 10.1137/12086491X. |