2014, 4(4): 327-340. doi: 10.3934/naco.2014.4.327

Minimax problems for set-valued mappings with set optimization

1. 

College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China

2. 

College of Public Foundation, Yunnan Open University, Kunming 650223, China

Received  September 2014 Revised  December 2014 Published  December 2014

In this paper, we introduce a class of set-valued mappings with some set order relations, which is called uniformly same-order. For this sort of mappings, we obtain some existence results of saddle points and depict the structures of the sets of saddle points. Moreover, we obtain a minimax theorem and establish an equivalent relationship between the minimax theorem and a saddle point theorem for the scalar set-valued mappings, in which the minimization and the maximization of set-valued mappings are taken in the sense of set optimization.
Citation: Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327
References:
[1]

Q. H. Ansari, Y. C. Lin and J. C. Yao, General KKM theorem with applications to minimax and variational inequalities,, J. Optim. Theory Appl., 104 (2000), 17. doi: 10.1023/A:1004620620928.

[2]

G. Y. Chen, A generalized section theorem and a minimax inequality for a vector-valued mapping,, Optimization, 22 (1991), 745. doi: 10.1080/02331939108843716.

[3]

J. W. Chen, Z. P. Wang and Y. J. Cho, The existence of solutions and well-posedness for bilevel mixed equilibrium problems in Banach spaces,, Taiwanese J. Math., 17 (2013), 725. doi: 10.11650/tjm.17.2013.2337.

[4]

Y. J. Cho, S. S. Chang, J. S. Jung, S. M. Kang and X. Wu, Minimax theorems in probabilistic metric spaces,, Bull. Austral. Math. Soc., 51 (1995), 103. doi: 10.1017/S0004972700013939.

[5]

Y. J. Cho, M. R. Delavar, S. A. Mohammadzadeh and M. Roohi, Coincidence theorems and minimax inequalities in abstract convex spaces,, J. Inequal. Appl., 2011 (2011), 1.

[6]

C. S. Chuang and L. J. Lin, New existence theorems for quasi-equilibrium problems and a minimax theorem on complete metric spaces,, J. Glob. Optim., 57 (2013), 533. doi: 10.1007/s10898-012-0004-3.

[7]

F. Ferro, A minimax theorem for vector-valued functions,, J. Optim. Theory Appl., 60 (1989), 19. doi: 10.1007/BF00938796.

[8]

F. Ferro, A minimax theorem for vector-valued functions, Part 2,, J. Optim. Theory Appl., 68 (1991), 35. doi: 10.1007/BF00939934.

[9]

X. H. Gong, The strong minimax theorem and strong saddle points of vector-valued functions,, Nonlinear Anal., 68 (2008), 2228. doi: 10.1016/j.na.2007.01.056.

[10]

X. H. Gong, Strong vector equilibrium problems,, J. Glob. Optim., 36 (2006), 339. doi: 10.1007/s10898-006-9012-5.

[11]

E. Hernández and L. Rodríguez-Marín, Nonconvex scalarization in set optimization with set-valued maps,, J. Math. Anal. Appl., 325 (2007), 1.

[12]

J. Jahn and T. X. D. Ha, New order relations in set optimization,, J. Optim. Theory Appl., 148 (2011), 209. doi: 10.1007/s10957-010-9752-8.

[13]

D. Kuroiwa, Some duality theorems of set-valued optimization with natural criteria,, in Nonlinear Analysis and Convex Analysis (eds. W. Takahashi and T. Tanaka), (1999), 221.

[14]

X. B. Li, S. J. Li and Z. M. Fang, A minimax theorem for vector valued functions in lexicographic order,, Nonlinear Anal., 73 (2010), 1101. doi: 10.1016/j.na.2010.04.047.

[15]

S. J. Li, G. Y. Chen and G. M. Lee, Minimax theorems for set-valued mappings,, J. Optim. Theory Appl., 106 (2000), 183. doi: 10.1023/A:1004667309814.

[16]

S. J. Li, G. Y. Chen, K. L. Teo and X. Q. Yang, Generalized minimax inequalities for set-valued mappings,, J. Math. Anal. Appl., 281 (2003), 707. doi: 10.1016/S0022-247X(03)00197-5.

[17]

Y. C. Lin, Q. H. Ansari and H. C. Lai, Minimax theorems for set-valued mappings under cone-convexities,, Abstr. Appl. Anal., 2012 (2012), 1.

[18]

Y. C. Lin and H. J. Chen, Solving the set equilibrium problems,, Fixed Point Theory Appl., 2011 (2011), 1.

[19]

Y. C. Lin, The hierarchical minimax theorems,, Taiwan. J. Math., 18 (2014), 451. doi: 10.11650/tjm.18.2014.3503.

[20]

Y. C. Lin, On generalized vector equilibrium problems,, Nonlinear Anal., 70 (2009), 1040. doi: 10.1016/j.na.2008.01.030.

[21]

X. J. Long and J. W. Peng, Generalized B-well-posedness for set optimization,, J. Optim. Theory Appl., 157 (2013), 612. doi: 10.1007/s10957-012-0205-4.

[22]

D. T. Luc, Theory of Vector Optimization: Lecture Notes in Economics and Mathematical Systems,, Springer-Verlag, (1989).

[23]

J. W. Nieuwenhuis, Some minimax theorems in vector-valued functions,, J. Optim. Theory Appl., 40 (1983), 463. doi: 10.1007/BF00933511.

[24]

M. Patriche, Minimax theorems for set-valued maps without continuity assumptions, preprint,, , ().

[25]

D. S. Shi and C. Ling, Minimax theorems and cone saddle points of uniformly same-order vector-valued functions,, J. Optim. Theory Appl., 84 (1995), 575. doi: 10.1007/BF02191986.

[26]

M. G. Yang, J. P. Xu, N. J. Huang and S. J. Yu, Minimax theorems for vector-valued mappings in abstract convex spaces,, Taiwanese J.Math., 14 (2010), 719.

[27]

Q. B. Zhang, C. Z. Cheng and X. X. Li, Generalized minimax theorems for two set-valued mappings,, J. Ind. Manag. Optim., 9 (2013), 1. doi: 10.3934/jimo.2013.9.1.

[28]

Q. B. Zhang, M. J. Liu and C. Z. Cheng, Generalized saddle points theorems for set-valued mappings in locally generalized convex spaces,, Nonlinear Anal., 71 (2009), 212. doi: 10.1016/j.na.2008.10.040.

[29]

W. Y. Zhang, S. J. Li and K. L. Teo, Well-posedness for set optimization problems,, Nonlinear Anal., 71 (2009), 3769. doi: 10.1016/j.na.2009.02.036.

[30]

Y. Zhang, S.J. Li and S.K. Zhu, Mininax problems for set-valued mappings,, Numer. Funct. Anal. Optim., 33 (2012), 239. doi: 10.1080/01630563.2011.610915.

[31]

Y. Zhang and S. J. Li, Minimax problems of uniformly same-order set-valued mappings,, Bull. Korean Math. Soc., 50 (2013), 1639. doi: 10.4134/BKMS.2013.50.5.1639.

[32]

Y. Zhang and S. J. Li, Minimax theorems for scalar set-valued mappings with nonconvex domains and applications,, J. Glob. Optim., 57 (2013), 1359. doi: 10.1007/s10898-012-9992-2.

[33]

Y. Zhang, S. J. Li and M. H. Li, Mininax inequalities for set-valued mappings,, Positivity, 16 (2012), 751. doi: 10.1007/s11117-011-0144-6.

show all references

References:
[1]

Q. H. Ansari, Y. C. Lin and J. C. Yao, General KKM theorem with applications to minimax and variational inequalities,, J. Optim. Theory Appl., 104 (2000), 17. doi: 10.1023/A:1004620620928.

[2]

G. Y. Chen, A generalized section theorem and a minimax inequality for a vector-valued mapping,, Optimization, 22 (1991), 745. doi: 10.1080/02331939108843716.

[3]

J. W. Chen, Z. P. Wang and Y. J. Cho, The existence of solutions and well-posedness for bilevel mixed equilibrium problems in Banach spaces,, Taiwanese J. Math., 17 (2013), 725. doi: 10.11650/tjm.17.2013.2337.

[4]

Y. J. Cho, S. S. Chang, J. S. Jung, S. M. Kang and X. Wu, Minimax theorems in probabilistic metric spaces,, Bull. Austral. Math. Soc., 51 (1995), 103. doi: 10.1017/S0004972700013939.

[5]

Y. J. Cho, M. R. Delavar, S. A. Mohammadzadeh and M. Roohi, Coincidence theorems and minimax inequalities in abstract convex spaces,, J. Inequal. Appl., 2011 (2011), 1.

[6]

C. S. Chuang and L. J. Lin, New existence theorems for quasi-equilibrium problems and a minimax theorem on complete metric spaces,, J. Glob. Optim., 57 (2013), 533. doi: 10.1007/s10898-012-0004-3.

[7]

F. Ferro, A minimax theorem for vector-valued functions,, J. Optim. Theory Appl., 60 (1989), 19. doi: 10.1007/BF00938796.

[8]

F. Ferro, A minimax theorem for vector-valued functions, Part 2,, J. Optim. Theory Appl., 68 (1991), 35. doi: 10.1007/BF00939934.

[9]

X. H. Gong, The strong minimax theorem and strong saddle points of vector-valued functions,, Nonlinear Anal., 68 (2008), 2228. doi: 10.1016/j.na.2007.01.056.

[10]

X. H. Gong, Strong vector equilibrium problems,, J. Glob. Optim., 36 (2006), 339. doi: 10.1007/s10898-006-9012-5.

[11]

E. Hernández and L. Rodríguez-Marín, Nonconvex scalarization in set optimization with set-valued maps,, J. Math. Anal. Appl., 325 (2007), 1.

[12]

J. Jahn and T. X. D. Ha, New order relations in set optimization,, J. Optim. Theory Appl., 148 (2011), 209. doi: 10.1007/s10957-010-9752-8.

[13]

D. Kuroiwa, Some duality theorems of set-valued optimization with natural criteria,, in Nonlinear Analysis and Convex Analysis (eds. W. Takahashi and T. Tanaka), (1999), 221.

[14]

X. B. Li, S. J. Li and Z. M. Fang, A minimax theorem for vector valued functions in lexicographic order,, Nonlinear Anal., 73 (2010), 1101. doi: 10.1016/j.na.2010.04.047.

[15]

S. J. Li, G. Y. Chen and G. M. Lee, Minimax theorems for set-valued mappings,, J. Optim. Theory Appl., 106 (2000), 183. doi: 10.1023/A:1004667309814.

[16]

S. J. Li, G. Y. Chen, K. L. Teo and X. Q. Yang, Generalized minimax inequalities for set-valued mappings,, J. Math. Anal. Appl., 281 (2003), 707. doi: 10.1016/S0022-247X(03)00197-5.

[17]

Y. C. Lin, Q. H. Ansari and H. C. Lai, Minimax theorems for set-valued mappings under cone-convexities,, Abstr. Appl. Anal., 2012 (2012), 1.

[18]

Y. C. Lin and H. J. Chen, Solving the set equilibrium problems,, Fixed Point Theory Appl., 2011 (2011), 1.

[19]

Y. C. Lin, The hierarchical minimax theorems,, Taiwan. J. Math., 18 (2014), 451. doi: 10.11650/tjm.18.2014.3503.

[20]

Y. C. Lin, On generalized vector equilibrium problems,, Nonlinear Anal., 70 (2009), 1040. doi: 10.1016/j.na.2008.01.030.

[21]

X. J. Long and J. W. Peng, Generalized B-well-posedness for set optimization,, J. Optim. Theory Appl., 157 (2013), 612. doi: 10.1007/s10957-012-0205-4.

[22]

D. T. Luc, Theory of Vector Optimization: Lecture Notes in Economics and Mathematical Systems,, Springer-Verlag, (1989).

[23]

J. W. Nieuwenhuis, Some minimax theorems in vector-valued functions,, J. Optim. Theory Appl., 40 (1983), 463. doi: 10.1007/BF00933511.

[24]

M. Patriche, Minimax theorems for set-valued maps without continuity assumptions, preprint,, , ().

[25]

D. S. Shi and C. Ling, Minimax theorems and cone saddle points of uniformly same-order vector-valued functions,, J. Optim. Theory Appl., 84 (1995), 575. doi: 10.1007/BF02191986.

[26]

M. G. Yang, J. P. Xu, N. J. Huang and S. J. Yu, Minimax theorems for vector-valued mappings in abstract convex spaces,, Taiwanese J.Math., 14 (2010), 719.

[27]

Q. B. Zhang, C. Z. Cheng and X. X. Li, Generalized minimax theorems for two set-valued mappings,, J. Ind. Manag. Optim., 9 (2013), 1. doi: 10.3934/jimo.2013.9.1.

[28]

Q. B. Zhang, M. J. Liu and C. Z. Cheng, Generalized saddle points theorems for set-valued mappings in locally generalized convex spaces,, Nonlinear Anal., 71 (2009), 212. doi: 10.1016/j.na.2008.10.040.

[29]

W. Y. Zhang, S. J. Li and K. L. Teo, Well-posedness for set optimization problems,, Nonlinear Anal., 71 (2009), 3769. doi: 10.1016/j.na.2009.02.036.

[30]

Y. Zhang, S.J. Li and S.K. Zhu, Mininax problems for set-valued mappings,, Numer. Funct. Anal. Optim., 33 (2012), 239. doi: 10.1080/01630563.2011.610915.

[31]

Y. Zhang and S. J. Li, Minimax problems of uniformly same-order set-valued mappings,, Bull. Korean Math. Soc., 50 (2013), 1639. doi: 10.4134/BKMS.2013.50.5.1639.

[32]

Y. Zhang and S. J. Li, Minimax theorems for scalar set-valued mappings with nonconvex domains and applications,, J. Glob. Optim., 57 (2013), 1359. doi: 10.1007/s10898-012-9992-2.

[33]

Y. Zhang, S. J. Li and M. H. Li, Mininax inequalities for set-valued mappings,, Positivity, 16 (2012), 751. doi: 10.1007/s11117-011-0144-6.

[1]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[2]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[3]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[4]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[5]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[6]

Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031

[7]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

[8]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[9]

Hsien-Chung Wu. Solving the interval-valued optimization problems based on the concept of null set. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1157-1178. doi: 10.3934/jimo.2018004

[10]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[11]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[12]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[13]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[14]

Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018174

[15]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[16]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[17]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[18]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[19]

Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2018138

[20]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

 Impact Factor: 

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]