2014, 4(4): 341-351. doi: 10.3934/naco.2014.4.341

Essential issues on solving optimal power flow problems using soft-computing

1. 

Department of Electrical and Computer Engineering, Curtin University, Perth, Australia, Australia

2. 

Business School, Central South University, Changsha, China

3. 

Department of Mathematics and Statistics, Curtin University, Perth, Australia

Received  July 2014 Revised  December 2014 Published  December 2014

Optimal power flow (OPF) problems are important optimization problems in power systems which aim to minimize the operation cost of generators so that the load demand can be met and the loadings are within the feasible operating regions of the generators. This brief paper emphasizes two essential issues related to solving the OPF problems and which are rarely addressed in recent research into power systems: 1) the necessity to validate operational constraints on OPF, which determine the feasibility of power systems designed for the OPF problems; and 2) and the necessity to develop conventional methods for solving OPF problems which can be more effective than the commonly-used heuristic methods.
Citation: Kit Yan Chan, Changjun Yu, Kok Lay Teo, Sven Nordholm. Essential issues on solving optimal power flow problems using soft-computing. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 341-351. doi: 10.3934/naco.2014.4.341
References:
[1]

A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas and V. Petridis, Optimal power flow by enhanced genetic algorithm,, IEEE Transactions on Power Systems, 17 (2002), 229.   Google Scholar

[2]

K. T. Chatuervedi, Manjaree Pandit and L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch,, IEEE Transactions on Power Systems, 23 (2008), 1079.   Google Scholar

[3]

C. L. Chiang, Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels,, IEEE Transactions on Power Systems, 24 (2005), 1690.   Google Scholar

[4]

M. Clerc and J. Kennedy, The particle swarm explosion, stability, and convergence in a multidimensional complex space,, IEEE Transactions on Evolutionary Computations, 6 (2002), 58.   Google Scholar

[5]

D. Devaraj and B. Yegnanarayana, Genetic-algorithm-based optimal power flow for security enhancement,, IEE Proceedings: Generation, 152 (2005), 899.   Google Scholar

[6]

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory,, in Proceedings 6th International Symposium on Micro Machine and Human Science, (1995), 39.   Google Scholar

[7]

A. A. A. Esmin, G. L. Torres and A. C. Zamhroni, A hybrid particle swarm optimization applied to loss power minimization,, IEEE Transactions on Power Systems, 20 (2005), 859.   Google Scholar

[8]

L. K. Kirchmayer, Economic Operation of Power Systems,, Wiley, (1958).   Google Scholar

[9]

K. F. Man, K. S. Tang and S. Kwong, Genetic algorithm: concepts and applications,, IEEE Transactions on Industrial Electronics, 43 (1996), 519.   Google Scholar

[10]

K. Meng, H. G. Wang, Z. Y. Dong and K. P. Wong, Quantum inspired particle swarm optimization for valve point economic load dispatch,, IEEE Transactions on Power Systems, 25 (2010), 215.   Google Scholar

[11]

N. Mo, Z. Y. Zou, K. W. Chan and G. T. Y. Pong, Transient stability constrained optimal power flow using particle swarm optimization,, IET Proceedings Generation, 1 (2007), 476.   Google Scholar

[12]

S. R. Paranjothi and K. Anburaja, Optimal power flow using refined genetic algorithm,, Electric Power Components and Systems, 30 (2002), 1055.   Google Scholar

[13]

J. Pilgrim, F. Li and R. K. Aggarwal, Genetic algorithms for optimal reactive power compensation on the national grid system,, Proceedings of IEEE Power Engineering Society Transmission and Distribution Conference 2000, (2000), 524.   Google Scholar

[14]

M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations,, Numerical Analysis, 630 (1977), 144.   Google Scholar

[15]

M. J. D. Powell, Algorithms for nonlinear constraints that use lagrangian functions,, Mathematical Programming, 14 (1978), 224.   Google Scholar

[16]

M. J. D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations,, In Proceedings of Nonlinear Programming 3 (1978), 3 (1978), 27.   Google Scholar

[17]

C. R. Reeves, Genetic algorithms and neighbourhood search,, Evolutionary Computing: AISB Workshop, (1994), 115.   Google Scholar

[18]

W. Y. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming,, Springer, (2006).   Google Scholar

[19]

R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template,, Proceedings of parallel problem-solving from nature, 2 (1992), 65.   Google Scholar

[20]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, New York: Longman Scientific & Technical, (1991).   Google Scholar

[21]

M. Todorovski and D. Rajicic, An initialization procedure in solving optimal power flow by genetic algorithm,, IEEE Transactions on Power Systems, 21 (2006), 480.   Google Scholar

[22]

R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template,, Proceedings of Parallel Problem-Solving from Nature, 2 (1992), 65.   Google Scholar

[23]

A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control,, New York, (1996).   Google Scholar

[24]

J. Yuryevich and K. P. Wong, Evolutionary programming based optimal power flow algorithm,, IEEE Transactions on Power Systems, 14 (1999), 1245.   Google Scholar

[25]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem,, Journal of Industrial Management and Optimization, 8 (2012), 485.  doi: 10.3934/jimo.2012.8.485.  Google Scholar

[26]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems,, Journal of Industrial Management and Optimization, 6 (2010), 895.  doi: 10.3934/jimo.2010.6.895.  Google Scholar

show all references

References:
[1]

A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas and V. Petridis, Optimal power flow by enhanced genetic algorithm,, IEEE Transactions on Power Systems, 17 (2002), 229.   Google Scholar

[2]

K. T. Chatuervedi, Manjaree Pandit and L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch,, IEEE Transactions on Power Systems, 23 (2008), 1079.   Google Scholar

[3]

C. L. Chiang, Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels,, IEEE Transactions on Power Systems, 24 (2005), 1690.   Google Scholar

[4]

M. Clerc and J. Kennedy, The particle swarm explosion, stability, and convergence in a multidimensional complex space,, IEEE Transactions on Evolutionary Computations, 6 (2002), 58.   Google Scholar

[5]

D. Devaraj and B. Yegnanarayana, Genetic-algorithm-based optimal power flow for security enhancement,, IEE Proceedings: Generation, 152 (2005), 899.   Google Scholar

[6]

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory,, in Proceedings 6th International Symposium on Micro Machine and Human Science, (1995), 39.   Google Scholar

[7]

A. A. A. Esmin, G. L. Torres and A. C. Zamhroni, A hybrid particle swarm optimization applied to loss power minimization,, IEEE Transactions on Power Systems, 20 (2005), 859.   Google Scholar

[8]

L. K. Kirchmayer, Economic Operation of Power Systems,, Wiley, (1958).   Google Scholar

[9]

K. F. Man, K. S. Tang and S. Kwong, Genetic algorithm: concepts and applications,, IEEE Transactions on Industrial Electronics, 43 (1996), 519.   Google Scholar

[10]

K. Meng, H. G. Wang, Z. Y. Dong and K. P. Wong, Quantum inspired particle swarm optimization for valve point economic load dispatch,, IEEE Transactions on Power Systems, 25 (2010), 215.   Google Scholar

[11]

N. Mo, Z. Y. Zou, K. W. Chan and G. T. Y. Pong, Transient stability constrained optimal power flow using particle swarm optimization,, IET Proceedings Generation, 1 (2007), 476.   Google Scholar

[12]

S. R. Paranjothi and K. Anburaja, Optimal power flow using refined genetic algorithm,, Electric Power Components and Systems, 30 (2002), 1055.   Google Scholar

[13]

J. Pilgrim, F. Li and R. K. Aggarwal, Genetic algorithms for optimal reactive power compensation on the national grid system,, Proceedings of IEEE Power Engineering Society Transmission and Distribution Conference 2000, (2000), 524.   Google Scholar

[14]

M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations,, Numerical Analysis, 630 (1977), 144.   Google Scholar

[15]

M. J. D. Powell, Algorithms for nonlinear constraints that use lagrangian functions,, Mathematical Programming, 14 (1978), 224.   Google Scholar

[16]

M. J. D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations,, In Proceedings of Nonlinear Programming 3 (1978), 3 (1978), 27.   Google Scholar

[17]

C. R. Reeves, Genetic algorithms and neighbourhood search,, Evolutionary Computing: AISB Workshop, (1994), 115.   Google Scholar

[18]

W. Y. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming,, Springer, (2006).   Google Scholar

[19]

R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template,, Proceedings of parallel problem-solving from nature, 2 (1992), 65.   Google Scholar

[20]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, New York: Longman Scientific & Technical, (1991).   Google Scholar

[21]

M. Todorovski and D. Rajicic, An initialization procedure in solving optimal power flow by genetic algorithm,, IEEE Transactions on Power Systems, 21 (2006), 480.   Google Scholar

[22]

R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template,, Proceedings of Parallel Problem-Solving from Nature, 2 (1992), 65.   Google Scholar

[23]

A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control,, New York, (1996).   Google Scholar

[24]

J. Yuryevich and K. P. Wong, Evolutionary programming based optimal power flow algorithm,, IEEE Transactions on Power Systems, 14 (1999), 1245.   Google Scholar

[25]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem,, Journal of Industrial Management and Optimization, 8 (2012), 485.  doi: 10.3934/jimo.2012.8.485.  Google Scholar

[26]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems,, Journal of Industrial Management and Optimization, 6 (2010), 895.  doi: 10.3934/jimo.2010.6.895.  Google Scholar

[1]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[2]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

 Impact Factor: 

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

[Back to Top]