2014, 4(4): 341-351. doi: 10.3934/naco.2014.4.341

Essential issues on solving optimal power flow problems using soft-computing

1. 

Department of Electrical and Computer Engineering, Curtin University, Perth, Australia, Australia

2. 

Business School, Central South University, Changsha, China

3. 

Department of Mathematics and Statistics, Curtin University, Perth, Australia

Received  July 2014 Revised  December 2014 Published  December 2014

Optimal power flow (OPF) problems are important optimization problems in power systems which aim to minimize the operation cost of generators so that the load demand can be met and the loadings are within the feasible operating regions of the generators. This brief paper emphasizes two essential issues related to solving the OPF problems and which are rarely addressed in recent research into power systems: 1) the necessity to validate operational constraints on OPF, which determine the feasibility of power systems designed for the OPF problems; and 2) and the necessity to develop conventional methods for solving OPF problems which can be more effective than the commonly-used heuristic methods.
Citation: Kit Yan Chan, Changjun Yu, Kok Lay Teo, Sven Nordholm. Essential issues on solving optimal power flow problems using soft-computing. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 341-351. doi: 10.3934/naco.2014.4.341
References:
[1]

A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas and V. Petridis, Optimal power flow by enhanced genetic algorithm, IEEE Transactions on Power Systems, 17 (2002), 229-236.

[2]

K. T. Chatuervedi, Manjaree Pandit and L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch, IEEE Transactions on Power Systems, 23 (2008), 1079-1087.

[3]

C. L. Chiang, Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels, IEEE Transactions on Power Systems, 24 (2005), 1690-1699.

[4]

M. Clerc and J. Kennedy, The particle swarm explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computations, 6 (2002), 58-73.

[5]

D. Devaraj and B. Yegnanarayana, Genetic-algorithm-based optimal power flow for security enhancement, IEE Proceedings: Generation, Transmission and Distribution, 152 (2005), 899-905.

[6]

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proceedings 6th International Symposium on Micro Machine and Human Science, IEEE Service Center, Nagoya, 1995, 39-43.

[7]

A. A. A. Esmin, G. L. Torres and A. C. Zamhroni, A hybrid particle swarm optimization applied to loss power minimization, IEEE Transactions on Power Systems, 20 (2005), 859-866.

[8]

L. K. Kirchmayer, Economic Operation of Power Systems, Wiley, New York, 1958.

[9]

K. F. Man, K. S. Tang and S. Kwong, Genetic algorithm: concepts and applications, IEEE Transactions on Industrial Electronics, 43 (1996), 519-534.

[10]

K. Meng, H. G. Wang, Z. Y. Dong and K. P. Wong, Quantum inspired particle swarm optimization for valve point economic load dispatch, IEEE Transactions on Power Systems, 25 (2010), 215-222.

[11]

N. Mo, Z. Y. Zou, K. W. Chan and G. T. Y. Pong, Transient stability constrained optimal power flow using particle swarm optimization, IET Proceedings Generation, Transmission and Distribution, 1 (2007), 476-483.

[12]

S. R. Paranjothi and K. Anburaja, Optimal power flow using refined genetic algorithm, Electric Power Components and Systems, 30 (2002), 1055-1063.

[13]

J. Pilgrim, F. Li and R. K. Aggarwal, Genetic algorithms for optimal reactive power compensation on the national grid system, Proceedings of IEEE Power Engineering Society Transmission and Distribution Conference 2000, 524-529.

[14]

M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, 630 (1977), 144-157.

[15]

M. J. D. Powell, Algorithms for nonlinear constraints that use lagrangian functions, Mathematical Programming, 14 (1978), 224-248.

[16]

M. J. D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations, In Proceedings of Nonlinear Programming 3 (1978), 27-63.

[17]

C. R. Reeves, Genetic algorithms and neighbourhood search, Evolutionary Computing: AISB Workshop, 1994, 115-130.

[18]

W. Y. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, 2006.

[19]

R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template, Proceedings of parallel problem-solving from nature, 2 (1992), 65-74.

[20]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, New York: Longman Scientific & Technical, 1991.

[21]

M. Todorovski and D. Rajicic, An initialization procedure in solving optimal power flow by genetic algorithm, IEEE Transactions on Power Systems, 21 (2006), 480-487.

[22]

R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template, Proceedings of Parallel Problem-Solving from Nature, 2 (1992), 65-74.

[23]

A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, New York, John Wiley & Sons (2nd edition), 1996.

[24]

J. Yuryevich and K. P. Wong, Evolutionary programming based optimal power flow algorithm, IEEE Transactions on Power Systems, 14 (1999), 1245-1250.

[25]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491. doi: 10.3934/jimo.2012.8.485.

[26]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial Management and Optimization, 6 (2010), 895-910. doi: 10.3934/jimo.2010.6.895.

show all references

References:
[1]

A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas and V. Petridis, Optimal power flow by enhanced genetic algorithm, IEEE Transactions on Power Systems, 17 (2002), 229-236.

[2]

K. T. Chatuervedi, Manjaree Pandit and L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch, IEEE Transactions on Power Systems, 23 (2008), 1079-1087.

[3]

C. L. Chiang, Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels, IEEE Transactions on Power Systems, 24 (2005), 1690-1699.

[4]

M. Clerc and J. Kennedy, The particle swarm explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computations, 6 (2002), 58-73.

[5]

D. Devaraj and B. Yegnanarayana, Genetic-algorithm-based optimal power flow for security enhancement, IEE Proceedings: Generation, Transmission and Distribution, 152 (2005), 899-905.

[6]

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proceedings 6th International Symposium on Micro Machine and Human Science, IEEE Service Center, Nagoya, 1995, 39-43.

[7]

A. A. A. Esmin, G. L. Torres and A. C. Zamhroni, A hybrid particle swarm optimization applied to loss power minimization, IEEE Transactions on Power Systems, 20 (2005), 859-866.

[8]

L. K. Kirchmayer, Economic Operation of Power Systems, Wiley, New York, 1958.

[9]

K. F. Man, K. S. Tang and S. Kwong, Genetic algorithm: concepts and applications, IEEE Transactions on Industrial Electronics, 43 (1996), 519-534.

[10]

K. Meng, H. G. Wang, Z. Y. Dong and K. P. Wong, Quantum inspired particle swarm optimization for valve point economic load dispatch, IEEE Transactions on Power Systems, 25 (2010), 215-222.

[11]

N. Mo, Z. Y. Zou, K. W. Chan and G. T. Y. Pong, Transient stability constrained optimal power flow using particle swarm optimization, IET Proceedings Generation, Transmission and Distribution, 1 (2007), 476-483.

[12]

S. R. Paranjothi and K. Anburaja, Optimal power flow using refined genetic algorithm, Electric Power Components and Systems, 30 (2002), 1055-1063.

[13]

J. Pilgrim, F. Li and R. K. Aggarwal, Genetic algorithms for optimal reactive power compensation on the national grid system, Proceedings of IEEE Power Engineering Society Transmission and Distribution Conference 2000, 524-529.

[14]

M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, 630 (1977), 144-157.

[15]

M. J. D. Powell, Algorithms for nonlinear constraints that use lagrangian functions, Mathematical Programming, 14 (1978), 224-248.

[16]

M. J. D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations, In Proceedings of Nonlinear Programming 3 (1978), 27-63.

[17]

C. R. Reeves, Genetic algorithms and neighbourhood search, Evolutionary Computing: AISB Workshop, 1994, 115-130.

[18]

W. Y. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, 2006.

[19]

R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template, Proceedings of parallel problem-solving from nature, 2 (1992), 65-74.

[20]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, New York: Longman Scientific & Technical, 1991.

[21]

M. Todorovski and D. Rajicic, An initialization procedure in solving optimal power flow by genetic algorithm, IEEE Transactions on Power Systems, 21 (2006), 480-487.

[22]

R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template, Proceedings of Parallel Problem-Solving from Nature, 2 (1992), 65-74.

[23]

A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, New York, John Wiley & Sons (2nd edition), 1996.

[24]

J. Yuryevich and K. P. Wong, Evolutionary programming based optimal power flow algorithm, IEEE Transactions on Power Systems, 14 (1999), 1245-1250.

[25]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491. doi: 10.3934/jimo.2012.8.485.

[26]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial Management and Optimization, 6 (2010), 895-910. doi: 10.3934/jimo.2010.6.895.

[1]

Pooja. A novel differential evolution algorithm for economic power dispatch problem. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021042

[2]

Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009

[3]

Md. Abul Kalam Azad, Edite M.G.P. Fernandes. A modified differential evolution based solution technique for economic dispatch problems. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1017-1038. doi: 10.3934/jimo.2012.8.1017

[4]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[5]

Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038

[6]

Arezu Zare, Mohammad Keyanpour, Maziar Salahi. On fractional quadratic optimization problem with two quadratic constraints. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 301-315. doi: 10.3934/naco.2020003

[7]

Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066

[8]

Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks and Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631

[9]

Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial and Management Optimization, 2019, 15 (1) : 177-198. doi: 10.3934/jimo.2018038

[10]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial and Management Optimization, 2022, 18 (2) : 897-932. doi: 10.3934/jimo.2021002

[11]

Mostafa Abouei Ardakan, A. Kourank Beheshti, S. Hamid Mirmohammadi, Hamed Davari Ardakani. A hybrid meta-heuristic algorithm to minimize the number of tardy jobs in a dynamic two-machine flow shop problem. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 465-480. doi: 10.3934/naco.2017029

[12]

Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial and Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31

[13]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1651-1663. doi: 10.3934/jimo.2021037

[14]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[15]

Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267

[16]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[17]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 321-337. doi: 10.3934/naco.2021008

[18]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[19]

Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001

[20]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

 Impact Factor: 

Metrics

  • PDF downloads (133)
  • HTML views (0)
  • Cited by (0)

[Back to Top]