Citation: |
[1] |
A. Auslender, Penalty and barrier methods: a unified framework, SIAM Journal on Optimization, 10 (1999), 211-230.doi: 10.1137/S1052623497324825. |
[2] |
A. Auslender, Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone, Optimization Methods and Software, 18 (2003), 359-376.doi: 10.1080/1055678031000122586. |
[3] |
A. Auslender and H. Ramirez, Penalty and barrier methods for convex semidefinite programming, Mathematical Methods of Operations Research, 63 (2003), 195-219.doi: 10.1007/s00186-005-0054-0. |
[4] |
D. P. Bertsekas, Nonlinear Programming, 2nd edition, |
[5] |
R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0653-8. |
[6] |
A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications, MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, 2001.doi: 10.1137/1.9780898718829. |
[7] |
Y.-Q. Bai and G. Q. Wang, Primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, Acta Mathematica Sinica, 23 (2007), 2027-2042.doi: 10.1007/s10114-007-0967-z. |
[8] |
H. Bauschke, O. Güler, A. S. Lewis and S. Sendow, Hyperbolic polynomial and convex analysis, Canadian Journal of Mathematics, 53 (2001), 470-488.doi: 10.4153/CJM-2001-020-6. |
[9] |
Y.-L. Chang and J.-S. Chen, Convexity of symmetric cone trace functions in Euclidean Jordan algebras, Journal of Nonlinear and Convex Analysis, 14 (2013), 53-61. |
[10] |
J.-S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cone, Mathmatical Programming, 101 (2004), 95-117.doi: 10.1007/s10107-004-0538-3. |
[11] |
J.-S. Chen, The convex and monotone functions associated with second-order cone, Optimization, 55 (2006), 363-385.doi: 10.1080/02331930600819514. |
[12] |
J.-S. Chen, T.-K. Liao and S.-H. Pan, Using Schur Complement Theorem to prove convexity of some SOC-functions, submitted manuscript, 2011. |
[13] |
M. Fukushima, Z.-Q. Luo and P. Tseng, Smoothing functions for second-order cone complementarity problems, SIAM Journal on Optimazation, 12 (2002), 436-460.doi: 10.1137/S1052623400380365. |
[14] |
J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University Press, New York, 1994. |
[15] |
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1986. |
[16] |
A. Korányi, Monotone functions on formally real Jordan algebras, Mathematische Annalen, 269 (1984), 73-76.doi: 10.1007/BF01455996. |
[17] |
M. Koecher, The Minnesota Notes on Jordan Algebras and Their Applications, edited and annotated by A.Brieg and S.Walcher, Springer, Berlin, 1999. |
[18] |
R. D. C. Monteiro and T. Tsuchiya, Polynomial convergence of primal-dual algorithms for the second-order cone programs based on the MZ-family of directions, Mathematical Programming, 88 (2000), 61-83.doi: 10.1007/PL00011378. |
[19] |
J. Peng, C. Roos and T. Terlaky, Self-Regularity, A New Paradigm for Primal-Dual Interior-Point Algorithms, Princeton University Press, 2002. |
[20] |
R. Sznajder, M. S. Gowda and M. M. Moldovan, More results on Schur complements in Euclidean Jordan algebras, J. Glob. Optim., 53 (2012), 121-134.doi: 10.1007/s10898-011-9734-x. |
[21] |
D. Sun and J. Sun, Löwner's operator and spectral functions in Euclidean Jordan algebras, Mathematics of Operations Research, 33 (2008), 421-445.doi: 10.1287/moor.1070.0300. |
[22] |
T. Tsuchiya, A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming, Optimization Methods and Software, 11 (1999), 141-182.doi: 10.1080/10556789908805750. |