Citation: |
[1] |
P. H. Borgstrom, M. A. Batalinx, G. S. Sukhatmez and W. J. Kaiser, Weighted barrier functions for computation of force distributions with friction cone constraints, IEEE Int. Conf. Robot. Autom., (2010), 785-792. |
[2] |
S. P. Boyd and B. Wegbreit, Fast computation of optimal contact forces, IEEE Trans. Robot., 23 (2007), 1117-1132. |
[3] |
W. Chung, C. Rhee, Y. Shim, H. Lee and S. Park, Door-opening control of a service robot using the multifingered robot hand, IEEE Trans. Ind. Electron., 56 (2009), 3975-3984. |
[4] |
L. Han, J. C. Trinkle and Z. X. Li, Grasp analysis as linear matrix inequality problems, IEEE Trans. Robot. Autom., 16 (2000), 663-674. |
[5] |
M. H. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, 1995. |
[6] |
U. Helmke, K. Huper and J. B. Moore, Quadratically convergent algorithms for optimal dexterous hand grasping, IEEE Trans. Robot. Autom., 18 (2002), 138-146. |
[7] |
A. Kawamura, K. Tahara, R. Kurazume and T. Hasegawa, Dynamic grasping for an arbitrary polyhedral object by a multi-fingered hand-arm system, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 2264-2270. |
[8] |
C. H. Ko, J. S. Chen and C. Y. Yang, Recurrent neural networks for solving second-order cone programs, Neurocomputing, 74 (2011), 3646-3653. |
[9] |
C. H. Ko, S. H. Lin and J. K. Chen, Motion planning of multifingered hand-arm system with optimal grasping force, IEEE 2nd Int. Symp. Next-Generation Electron., (2013), 262-265. |
[10] |
V. Lippiello, B. Siciliano and L. Villani, A grasping force optimization algorithm for multiarm robots with multifingered hands, IEEE Trans. Robot., 29 (2013), 55-67. |
[11] |
Y. H. Liu, Qualitative test and force optimization of 3D frictional form-closure grasps using linear programming, IEEE Trans. Robot. Autom., 15 (1999), 163-173. |
[12] |
R. Michalec and A. Micaelli, Optimal tightening forces for multi-fingered robust manipulation, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 4160-4167. |
[13] |
R. M. Murray, Z. Li and S. S. Sastry, Mathematical Introduction to Robotic Manipulation, CRC Press, 1994. |
[14] |
S. H. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions, Comp. Optim. Appl., 45 (2010), 59-88.doi: 10.1007/s10589-008-9166-9. |
[15] |
D. Prattichizzo, M. Malvezzi, M. Aggravi and T. Wimböck, Object motion-decoupled internal force control for a compliant multifingered hand, IEEE Int. Conf. Robot. Autom., (2012), 1508-1513. |
[16] |
L. Qi and J. Sun, A nonsmooth version of Newtons method, Mathematical Programming, 58 (1993), 353-367.doi: 10.1007/BF01581275. |
[17] |
H. Scharfe, N. Hendrich and J. Zhang, Hybrid physics simulation of multi-fingered hands for dexterous in-hand manipulation, IEEE Int. Conf. Robot. Autom., (2012), 3777-3783. |
[18] |
T. Tsuji, K. Harada and K. Kaneko, Easy and fast evaluation of grasp stability by using ellipsoidal approximation of friction cone, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 1830-1837. |
[19] |
J. Xu and Z. Li, A kinematic model of finger gaits by multifingered hand as hybrid automaton, IEEE Trans. Autom. Sci. Eng., 50 (2008), 467-479. |