2014, 4(2): 93-101. doi: 10.3934/naco.2014.4.93

A sufficient condition of Euclidean rings given by polynomial optimization over a box

1. 

School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007, China

Received  June 2013 Revised  December 2013 Published  May 2014

A sufficient condition of Euclidean rings is given by polynomial optimization. Then, through computation, we give all norm-Euclidean square number fields, four examples of norm-Euclidean cubic number fields and two examples of norm-Euclidean cyclotomic fields, with the absolute of a norm less than 1 over the corresponding box, respectively.
Citation: Shenggui Zhang. A sufficient condition of Euclidean rings given by polynomial optimization over a box. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 93-101. doi: 10.3934/naco.2014.4.93
References:
[1]

K. J. Astrom, R. E. Klein and A. Lennartsson, Bicycle dynamics and control, IEEE Control Systems Magazine, 25 (2005), 26-47. doi: 10.1109/MCS.2005.1499389.

[2]

C. K. Chen and T. K. Dao, Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic, Vehicle System Dynamics, 48 (2010), 133-147.

[3]

C. Cornejo and L. Alvarez-Icaza, Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction, J. Vibration and Control, 18 (2012), 1025-1042. doi: 10.1177/1077546311408469.

[4]

M. L. Fair and S. L. Campbell, Active incipient fault detection in continuous time systems with multiple simultaneous faults, Numerical Algebra, Control and Optimization, 1 (2011), 211-224. doi: 10.3934/naco.2011.1.211.

[5]

L. Feng, Robust Control Design: An Optimal Control Approach, Wayne State University, USA and Tongji University, China, John Wiley and Sons Ltd, 2007.

[6]

N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics, Ph.D. Dissertation, University of California, 1995.

[7]

Y. Harata, Y. Banno and K. Taji, Parametric excitation based bipedal walking: Control method and optimization, Numerical Algebra, Control and Optimization, 1 (2011), 171-190. doi: 10.3934/naco.2011.1.171.

[8]

C. L. Hwang, H. M. Wu and C. L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle, IEEE Trans. Control Systems Technology, 17 (2009), 658-670.

[9]

N. H. K. Iuchi, H. Niki and T. Murakami, Attitude control of bicycle motion by steering angle and variable COG control, Proc. 31st Annual Conference of IEEE Industrial Electronics Society, IECON, (2005), 16-21.

[10]

R. N. Jazar, Mathematical theory of auto-driver for autonomous vehicles, J. Vibration and Control, 16 (2010), 253-279. doi: 10.1177/1077546309104467.

[11]

R. Khaled and N. G. Chalhoub, A dynamic model and a robust controller for a fully-actuated marine surface vessel, J. Vibration and Control, 17 (2011), 801-812.

[12]

L. Lujng, System Identification Theory for User, Linkopping University, Sweden.

[13]

M. S. Mahmoud, Computer-Operated Systems Control, Marcel Dekker Inc., New York, 1991.

[14]

M. S. Mahmoud, Robust control of blood gases during extracorporeal circulation, IET Control Theory and Applications, 5 (2011), 1577-1585. doi: 10.1049/iet-cta.2010.0665.

[15]

M. S. Mahmoud, Resilient $\begin{eqation*}\frac{L_2}{L_\infty} \end{equation*}$ filtering of polytopic systems with state delays, IET Control Theory And Applications, 1 (2007), 141-154. doi: 10.1049/iet-cta:20045281.

[16]

M. S. Mahmoud and A. Y. Al-Rayyah., Efficient parameterisation to stability and feedback synthesis of linear time-delay systems, IET control theory and applications, 3 (2009), 1107-1118. doi: 10.1049/iet-cta.2008.0152.

[17]

M. S. Mahmoud and Yuanqing Xia, Robust filter design for piecewise discrete-time systems with time-varying delays, International Journal of Robust and Nonlinear Control, 20 (2010), 544-560. doi: 10.1002/rnc.1447.

[18]

M. S. Mahmoud and M. M. Hussain, Design of linear systems with saturating actuators: A survey, Int. J. Numerical Algebra, Control and Optimization, 2 (2012), 413-435. doi: 10.3934/naco.2012.2.413.

[19]

J. Meijaard, J. Papadopoulos, A. Ruina and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review, Proc. the Royal Society A: Mathematical, Physical and Engineering Science, 463 (2007). doi: 10.1098/rspa.2007.1857.

[20]

K. Mendrok and Tadeusz Uhl, Load identification using a modified modal filter technique, J. Vibration and Control, 16 (2010), 89-105. doi: 10.1177/1077546309103274.

[21]

G. T. Michaltsos, Bouncing of a vehicle on an irregularity: A mathematical model, J. Vibration and Control, 16 (2010), 181-206. doi: 10.1177/1077546309104878.

[22]

H. Moradi, M. R. Movahhedy, and G. Vossoughi, Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties, J. Vibration and Control, 16 (2010), 231-251.

[23]

U. Nenner, R. Linker and P. Gutman, Robust feedback stabilization of an unmanned motorcycle, Control Engineering Practice, 2010.

[24]

Omar S. Al-Buraiki and El Ferik, Sami, Adaptive control of autonomous bicycle kinematics, Proc. 13th Automation and Systems (ICCAS), Gwangju, Korea, Oct. (2013), 20-23.

[25]

M. C. Pai, Sliding mode control of vibration in uncertain time-delay systems, J. Vibration and Control, 16 (2010),2131-2145. doi: 10.1177/1077546309350865.

[26]

H. Schttler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation, Int. J. Numerical Algebra, Control and Optimization, 2 (2012), 631-654. doi: 10.3934/naco.2012.2.631.

[27]

R. Sharp and D. Limebeer, A motorcycle model for stability and control analysis, Multi-body System Dynamics, 6 (2001), 123-142.

[28]

R. Sharp, Optimal preview speed-tracking control for motorcycles, Multi-body System Dynamics, 18 (2007), 397-411.

[29]

S. Sivrioglu, H control for suppressing acoustic modes of a distributed structure using cluster sensing and actuation, J. Vibration and Control, 16 (2010), 439-453.

[30]

N. Umashankar and H. D. Sharma, Adaptive neuro-fuzzy controller for stabilizing autonomous bicycle, Proc. IEEE International Conference Robotics and Biometrics, ROBIO06, (2006), 1652-1657.

[31]

T. Yamaguchi, T. Shibata and T. Murakami, Self-sustaining approach of electric bicycle by acceleration control based backstepping, Proc. 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON, (2007), 2610-2614.

[32]

K. Zhou and J. C. Doyle, Essentials of Robust Control, NJ: Prentice Hall, 1998.

show all references

References:
[1]

K. J. Astrom, R. E. Klein and A. Lennartsson, Bicycle dynamics and control, IEEE Control Systems Magazine, 25 (2005), 26-47. doi: 10.1109/MCS.2005.1499389.

[2]

C. K. Chen and T. K. Dao, Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic, Vehicle System Dynamics, 48 (2010), 133-147.

[3]

C. Cornejo and L. Alvarez-Icaza, Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction, J. Vibration and Control, 18 (2012), 1025-1042. doi: 10.1177/1077546311408469.

[4]

M. L. Fair and S. L. Campbell, Active incipient fault detection in continuous time systems with multiple simultaneous faults, Numerical Algebra, Control and Optimization, 1 (2011), 211-224. doi: 10.3934/naco.2011.1.211.

[5]

L. Feng, Robust Control Design: An Optimal Control Approach, Wayne State University, USA and Tongji University, China, John Wiley and Sons Ltd, 2007.

[6]

N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics, Ph.D. Dissertation, University of California, 1995.

[7]

Y. Harata, Y. Banno and K. Taji, Parametric excitation based bipedal walking: Control method and optimization, Numerical Algebra, Control and Optimization, 1 (2011), 171-190. doi: 10.3934/naco.2011.1.171.

[8]

C. L. Hwang, H. M. Wu and C. L. Shih, Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle, IEEE Trans. Control Systems Technology, 17 (2009), 658-670.

[9]

N. H. K. Iuchi, H. Niki and T. Murakami, Attitude control of bicycle motion by steering angle and variable COG control, Proc. 31st Annual Conference of IEEE Industrial Electronics Society, IECON, (2005), 16-21.

[10]

R. N. Jazar, Mathematical theory of auto-driver for autonomous vehicles, J. Vibration and Control, 16 (2010), 253-279. doi: 10.1177/1077546309104467.

[11]

R. Khaled and N. G. Chalhoub, A dynamic model and a robust controller for a fully-actuated marine surface vessel, J. Vibration and Control, 17 (2011), 801-812.

[12]

L. Lujng, System Identification Theory for User, Linkopping University, Sweden.

[13]

M. S. Mahmoud, Computer-Operated Systems Control, Marcel Dekker Inc., New York, 1991.

[14]

M. S. Mahmoud, Robust control of blood gases during extracorporeal circulation, IET Control Theory and Applications, 5 (2011), 1577-1585. doi: 10.1049/iet-cta.2010.0665.

[15]

M. S. Mahmoud, Resilient $\begin{eqation*}\frac{L_2}{L_\infty} \end{equation*}$ filtering of polytopic systems with state delays, IET Control Theory And Applications, 1 (2007), 141-154. doi: 10.1049/iet-cta:20045281.

[16]

M. S. Mahmoud and A. Y. Al-Rayyah., Efficient parameterisation to stability and feedback synthesis of linear time-delay systems, IET control theory and applications, 3 (2009), 1107-1118. doi: 10.1049/iet-cta.2008.0152.

[17]

M. S. Mahmoud and Yuanqing Xia, Robust filter design for piecewise discrete-time systems with time-varying delays, International Journal of Robust and Nonlinear Control, 20 (2010), 544-560. doi: 10.1002/rnc.1447.

[18]

M. S. Mahmoud and M. M. Hussain, Design of linear systems with saturating actuators: A survey, Int. J. Numerical Algebra, Control and Optimization, 2 (2012), 413-435. doi: 10.3934/naco.2012.2.413.

[19]

J. Meijaard, J. Papadopoulos, A. Ruina and A. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review, Proc. the Royal Society A: Mathematical, Physical and Engineering Science, 463 (2007). doi: 10.1098/rspa.2007.1857.

[20]

K. Mendrok and Tadeusz Uhl, Load identification using a modified modal filter technique, J. Vibration and Control, 16 (2010), 89-105. doi: 10.1177/1077546309103274.

[21]

G. T. Michaltsos, Bouncing of a vehicle on an irregularity: A mathematical model, J. Vibration and Control, 16 (2010), 181-206. doi: 10.1177/1077546309104878.

[22]

H. Moradi, M. R. Movahhedy, and G. Vossoughi, Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties, J. Vibration and Control, 16 (2010), 231-251.

[23]

U. Nenner, R. Linker and P. Gutman, Robust feedback stabilization of an unmanned motorcycle, Control Engineering Practice, 2010.

[24]

Omar S. Al-Buraiki and El Ferik, Sami, Adaptive control of autonomous bicycle kinematics, Proc. 13th Automation and Systems (ICCAS), Gwangju, Korea, Oct. (2013), 20-23.

[25]

M. C. Pai, Sliding mode control of vibration in uncertain time-delay systems, J. Vibration and Control, 16 (2010),2131-2145. doi: 10.1177/1077546309350865.

[26]

H. Schttler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation, Int. J. Numerical Algebra, Control and Optimization, 2 (2012), 631-654. doi: 10.3934/naco.2012.2.631.

[27]

R. Sharp and D. Limebeer, A motorcycle model for stability and control analysis, Multi-body System Dynamics, 6 (2001), 123-142.

[28]

R. Sharp, Optimal preview speed-tracking control for motorcycles, Multi-body System Dynamics, 18 (2007), 397-411.

[29]

S. Sivrioglu, H control for suppressing acoustic modes of a distributed structure using cluster sensing and actuation, J. Vibration and Control, 16 (2010), 439-453.

[30]

N. Umashankar and H. D. Sharma, Adaptive neuro-fuzzy controller for stabilizing autonomous bicycle, Proc. IEEE International Conference Robotics and Biometrics, ROBIO06, (2006), 1652-1657.

[31]

T. Yamaguchi, T. Shibata and T. Murakami, Self-sustaining approach of electric bicycle by acceleration control based backstepping, Proc. 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON, (2007), 2610-2614.

[32]

K. Zhou and J. C. Doyle, Essentials of Robust Control, NJ: Prentice Hall, 1998.

[1]

Andrew Best, Andreu Ferré Moragues. Polynomial ergodic averages for certain countable ring actions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3379-3413. doi: 10.3934/dcds.2022019

[2]

Aihua Li. An algebraic approach to building interpolating polynomial. Conference Publications, 2005, 2005 (Special) : 597-604. doi: 10.3934/proc.2005.2005.597

[3]

Pieter C. Allaart. An algebraic approach to entropy plateaus in non-integer base expansions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6507-6522. doi: 10.3934/dcds.2019282

[4]

Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2475-2485. doi: 10.3934/dcdsb.2018070

[5]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[6]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

[7]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[8]

David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229

[9]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm. Communications on Pure and Applied Analysis, 2003, 2 (1) : 33-50. doi: 10.3934/cpaa.2003.2.33

[10]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 31-54. doi: 10.3934/dcds.2003.9.31

[11]

Palash Sarkar, Shashank Singh. A unified polynomial selection method for the (tower) number field sieve algorithm. Advances in Mathematics of Communications, 2019, 13 (3) : 435-455. doi: 10.3934/amc.2019028

[12]

Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383

[13]

Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2783-2804. doi: 10.3934/jimo.2020094

[14]

Brigitte Vallée. Euclidean dynamics. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 281-352. doi: 10.3934/dcds.2006.15.281

[15]

Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial and Management Optimization, 2019, 15 (1) : 177-198. doi: 10.3934/jimo.2018038

[16]

Lin Zhu, Xinzhen Zhang. Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1505-1517. doi: 10.3934/jimo.2021030

[17]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[18]

Donglei Du, Tianping Shuai. Errata to:''Optimal preemptive online scheduling to minimize $l_{p}$ norm on two processors''[Journal of Industrial and Management Optimization, 1(3) (2005), 345-351.]. Journal of Industrial and Management Optimization, 2008, 4 (2) : 339-341. doi: 10.3934/jimo.2008.4.339

[19]

Stefanella Boatto. Curvature perturbations and stability of a ring of vortices. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 349-375. doi: 10.3934/dcdsb.2008.10.349

[20]

Yi An, Zhuohan Li, Changzhi Wu, Huosheng Hu, Cheng Shao, Bo Li. Earth pressure field modeling for tunnel face stability evaluation of EPB shield machines based on optimization solution. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1721-1741. doi: 10.3934/dcdss.2020101

 Impact Factor: 

Metrics

  • PDF downloads (116)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]