2015, 5(1): 1-9. doi: 10.3934/naco.2015.5.1

Determining the viability for hybrid control systems on a region with piecewise smooth boundary

1. 

School of Management, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China

2. 

Business School, University of Shanghai for Science and Technology, Shanghai, 200093

Received  December 2014 Revised  March 2015 Published  March 2015

This paper is devoted to determining the viability of hybrid control systems on a region which is expressed by inequalities of piecewise smooth functions. Firstly, the viability condition for the differential inclusion is discussed based on nonsmooth analysis. Secondly, the result is generalized to hybrid differential inclusion. Finally, the viability condition of differential inclusion on a region with the max-type function is given.
Citation: Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1
References:
[1]

P. J. Antsaklis and A. Nerode, Guest editorial hybrid control systems: an introductory discussion to the special issue,, IEEE Transactions on Automatic Control, 43 (1998), 457.   Google Scholar

[2]

J. P. Aubin, J. Lggeros, M. Quincampoix, S. Sastry and N. Seube, Impulse differential inclusions: A viability approach to hybrid systems,, IEEE Transactions on Automatic Control, 47 (2002), 2.  doi: 10.1109/9.981719.  Google Scholar

[3]

J. P. Aubin, Viability Theory,, Boston: Birkhauser, (1991).   Google Scholar

[4]

J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis,, Springer, (1993).  doi: 10.1007/978-3-662-02959-6.  Google Scholar

[5]

F. Blanchini, Set invariance in control,, Automatica, 35 (1999), 1747.  doi: 10.1016/S0005-1098(99)00113-2.  Google Scholar

[6]

R. W. Chaney, Piecewise $C^k$ functions in nonsmooth analysis,, Nonlinear Analysis, 15 (1990), 649.  doi: 10.1016/0362-546X(90)90005-2.  Google Scholar

[7]

F. H. Clark, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer-Verlag, (1998).   Google Scholar

[8]

V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis,, Frankfurt am Main: Peterlang, (1995).   Google Scholar

[9]

Y. Gao, Determining the viability for an affine nonlinear control system (in Chinese),, Journal of Control Theory and Applications, 26 (2006), 654.   Google Scholar

[10]

Y. Gao, Determining the viability for a class of nonlinear control system on a region with nonsmooth boundary (in Chinese),, Control and Decision, 21 (2006), 923.   Google Scholar

[11]

Y. Gao, J. Lggeros, M. Quincampoix and N. Seube, On the control of uncertain impulsive system: approximate stabilization and controlled invariance,, International Journal of Control, 77 (2004), 1393.  doi: 10.1080/00207170412331317431.  Google Scholar

[12]

Y. Gao, J. Lggeros and M. Quincampoix, On the reachability problem of uncertain hybrid systems,, IEEE Transactions on Automatic Control, 52 (2007), 1572.  doi: 10.1109/TAC.2007.904449.  Google Scholar

[13]

Y. Gao, Nonsmooth Optimization (in Chinese),, Science Press, (2008).   Google Scholar

[14]

Y. Gao, Viability criteria for differential inclusions,, Journal of Systems Science Complexity, 24 (2011), 825.  doi: 10.1007/s11424-011-9056-6.  Google Scholar

[15]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system,, Journal of Convex Analysis, 19 (2012), 1009.   Google Scholar

[16]

B. E. A. Milani and C. E. T. Dorea, On invariant polyhedra of continuous-time linear systems subject to additive disturbances,, Automatica, 32 (1996), 785.  doi: 10.1016/0005-1098(96)00002-7.  Google Scholar

[17]

B. Nikolai and T. Varvara, Numerical construction of viable sets for autonomous conflict control systems,, Mathematics, 2 (2014), 68.  doi: 10.3390/math2020068.  Google Scholar

[18]

P. S. Pierre, Hybrid Kernels and Capture Basins for Impulse Constrained Systems,, Proceedings of Hybrid Systems, (2003).   Google Scholar

[19]

M. Quincampoix and N. Seube, Stabilization of uncertain control systems through piecewise constant feedback,, Journal of Mathematical Analysis and Applications, 218 (1998), 240.  doi: 10.1006/jmaa.1997.5775.  Google Scholar

show all references

References:
[1]

P. J. Antsaklis and A. Nerode, Guest editorial hybrid control systems: an introductory discussion to the special issue,, IEEE Transactions on Automatic Control, 43 (1998), 457.   Google Scholar

[2]

J. P. Aubin, J. Lggeros, M. Quincampoix, S. Sastry and N. Seube, Impulse differential inclusions: A viability approach to hybrid systems,, IEEE Transactions on Automatic Control, 47 (2002), 2.  doi: 10.1109/9.981719.  Google Scholar

[3]

J. P. Aubin, Viability Theory,, Boston: Birkhauser, (1991).   Google Scholar

[4]

J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis,, Springer, (1993).  doi: 10.1007/978-3-662-02959-6.  Google Scholar

[5]

F. Blanchini, Set invariance in control,, Automatica, 35 (1999), 1747.  doi: 10.1016/S0005-1098(99)00113-2.  Google Scholar

[6]

R. W. Chaney, Piecewise $C^k$ functions in nonsmooth analysis,, Nonlinear Analysis, 15 (1990), 649.  doi: 10.1016/0362-546X(90)90005-2.  Google Scholar

[7]

F. H. Clark, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer-Verlag, (1998).   Google Scholar

[8]

V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis,, Frankfurt am Main: Peterlang, (1995).   Google Scholar

[9]

Y. Gao, Determining the viability for an affine nonlinear control system (in Chinese),, Journal of Control Theory and Applications, 26 (2006), 654.   Google Scholar

[10]

Y. Gao, Determining the viability for a class of nonlinear control system on a region with nonsmooth boundary (in Chinese),, Control and Decision, 21 (2006), 923.   Google Scholar

[11]

Y. Gao, J. Lggeros, M. Quincampoix and N. Seube, On the control of uncertain impulsive system: approximate stabilization and controlled invariance,, International Journal of Control, 77 (2004), 1393.  doi: 10.1080/00207170412331317431.  Google Scholar

[12]

Y. Gao, J. Lggeros and M. Quincampoix, On the reachability problem of uncertain hybrid systems,, IEEE Transactions on Automatic Control, 52 (2007), 1572.  doi: 10.1109/TAC.2007.904449.  Google Scholar

[13]

Y. Gao, Nonsmooth Optimization (in Chinese),, Science Press, (2008).   Google Scholar

[14]

Y. Gao, Viability criteria for differential inclusions,, Journal of Systems Science Complexity, 24 (2011), 825.  doi: 10.1007/s11424-011-9056-6.  Google Scholar

[15]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system,, Journal of Convex Analysis, 19 (2012), 1009.   Google Scholar

[16]

B. E. A. Milani and C. E. T. Dorea, On invariant polyhedra of continuous-time linear systems subject to additive disturbances,, Automatica, 32 (1996), 785.  doi: 10.1016/0005-1098(96)00002-7.  Google Scholar

[17]

B. Nikolai and T. Varvara, Numerical construction of viable sets for autonomous conflict control systems,, Mathematics, 2 (2014), 68.  doi: 10.3390/math2020068.  Google Scholar

[18]

P. S. Pierre, Hybrid Kernels and Capture Basins for Impulse Constrained Systems,, Proceedings of Hybrid Systems, (2003).   Google Scholar

[19]

M. Quincampoix and N. Seube, Stabilization of uncertain control systems through piecewise constant feedback,, Journal of Mathematical Analysis and Applications, 218 (1998), 240.  doi: 10.1006/jmaa.1997.5775.  Google Scholar

[1]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[8]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]