2015, 5(1): 1-9. doi: 10.3934/naco.2015.5.1

Determining the viability for hybrid control systems on a region with piecewise smooth boundary

1. 

School of Management, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China

2. 

Business School, University of Shanghai for Science and Technology, Shanghai, 200093

Received  December 2014 Revised  March 2015 Published  March 2015

This paper is devoted to determining the viability of hybrid control systems on a region which is expressed by inequalities of piecewise smooth functions. Firstly, the viability condition for the differential inclusion is discussed based on nonsmooth analysis. Secondly, the result is generalized to hybrid differential inclusion. Finally, the viability condition of differential inclusion on a region with the max-type function is given.
Citation: Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1
References:
[1]

P. J. Antsaklis and A. Nerode, Guest editorial hybrid control systems: an introductory discussion to the special issue,, IEEE Transactions on Automatic Control, 43 (1998), 457. Google Scholar

[2]

J. P. Aubin, J. Lggeros, M. Quincampoix, S. Sastry and N. Seube, Impulse differential inclusions: A viability approach to hybrid systems,, IEEE Transactions on Automatic Control, 47 (2002), 2. doi: 10.1109/9.981719. Google Scholar

[3]

J. P. Aubin, Viability Theory,, Boston: Birkhauser, (1991). Google Scholar

[4]

J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis,, Springer, (1993). doi: 10.1007/978-3-662-02959-6. Google Scholar

[5]

F. Blanchini, Set invariance in control,, Automatica, 35 (1999), 1747. doi: 10.1016/S0005-1098(99)00113-2. Google Scholar

[6]

R. W. Chaney, Piecewise $C^k$ functions in nonsmooth analysis,, Nonlinear Analysis, 15 (1990), 649. doi: 10.1016/0362-546X(90)90005-2. Google Scholar

[7]

F. H. Clark, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer-Verlag, (1998). Google Scholar

[8]

V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis,, Frankfurt am Main: Peterlang, (1995). Google Scholar

[9]

Y. Gao, Determining the viability for an affine nonlinear control system (in Chinese),, Journal of Control Theory and Applications, 26 (2006), 654. Google Scholar

[10]

Y. Gao, Determining the viability for a class of nonlinear control system on a region with nonsmooth boundary (in Chinese),, Control and Decision, 21 (2006), 923. Google Scholar

[11]

Y. Gao, J. Lggeros, M. Quincampoix and N. Seube, On the control of uncertain impulsive system: approximate stabilization and controlled invariance,, International Journal of Control, 77 (2004), 1393. doi: 10.1080/00207170412331317431. Google Scholar

[12]

Y. Gao, J. Lggeros and M. Quincampoix, On the reachability problem of uncertain hybrid systems,, IEEE Transactions on Automatic Control, 52 (2007), 1572. doi: 10.1109/TAC.2007.904449. Google Scholar

[13]

Y. Gao, Nonsmooth Optimization (in Chinese),, Science Press, (2008). Google Scholar

[14]

Y. Gao, Viability criteria for differential inclusions,, Journal of Systems Science Complexity, 24 (2011), 825. doi: 10.1007/s11424-011-9056-6. Google Scholar

[15]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system,, Journal of Convex Analysis, 19 (2012), 1009. Google Scholar

[16]

B. E. A. Milani and C. E. T. Dorea, On invariant polyhedra of continuous-time linear systems subject to additive disturbances,, Automatica, 32 (1996), 785. doi: 10.1016/0005-1098(96)00002-7. Google Scholar

[17]

B. Nikolai and T. Varvara, Numerical construction of viable sets for autonomous conflict control systems,, Mathematics, 2 (2014), 68. doi: 10.3390/math2020068. Google Scholar

[18]

P. S. Pierre, Hybrid Kernels and Capture Basins for Impulse Constrained Systems,, Proceedings of Hybrid Systems, (2003). Google Scholar

[19]

M. Quincampoix and N. Seube, Stabilization of uncertain control systems through piecewise constant feedback,, Journal of Mathematical Analysis and Applications, 218 (1998), 240. doi: 10.1006/jmaa.1997.5775. Google Scholar

show all references

References:
[1]

P. J. Antsaklis and A. Nerode, Guest editorial hybrid control systems: an introductory discussion to the special issue,, IEEE Transactions on Automatic Control, 43 (1998), 457. Google Scholar

[2]

J. P. Aubin, J. Lggeros, M. Quincampoix, S. Sastry and N. Seube, Impulse differential inclusions: A viability approach to hybrid systems,, IEEE Transactions on Automatic Control, 47 (2002), 2. doi: 10.1109/9.981719. Google Scholar

[3]

J. P. Aubin, Viability Theory,, Boston: Birkhauser, (1991). Google Scholar

[4]

J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis,, Springer, (1993). doi: 10.1007/978-3-662-02959-6. Google Scholar

[5]

F. Blanchini, Set invariance in control,, Automatica, 35 (1999), 1747. doi: 10.1016/S0005-1098(99)00113-2. Google Scholar

[6]

R. W. Chaney, Piecewise $C^k$ functions in nonsmooth analysis,, Nonlinear Analysis, 15 (1990), 649. doi: 10.1016/0362-546X(90)90005-2. Google Scholar

[7]

F. H. Clark, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer-Verlag, (1998). Google Scholar

[8]

V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis,, Frankfurt am Main: Peterlang, (1995). Google Scholar

[9]

Y. Gao, Determining the viability for an affine nonlinear control system (in Chinese),, Journal of Control Theory and Applications, 26 (2006), 654. Google Scholar

[10]

Y. Gao, Determining the viability for a class of nonlinear control system on a region with nonsmooth boundary (in Chinese),, Control and Decision, 21 (2006), 923. Google Scholar

[11]

Y. Gao, J. Lggeros, M. Quincampoix and N. Seube, On the control of uncertain impulsive system: approximate stabilization and controlled invariance,, International Journal of Control, 77 (2004), 1393. doi: 10.1080/00207170412331317431. Google Scholar

[12]

Y. Gao, J. Lggeros and M. Quincampoix, On the reachability problem of uncertain hybrid systems,, IEEE Transactions on Automatic Control, 52 (2007), 1572. doi: 10.1109/TAC.2007.904449. Google Scholar

[13]

Y. Gao, Nonsmooth Optimization (in Chinese),, Science Press, (2008). Google Scholar

[14]

Y. Gao, Viability criteria for differential inclusions,, Journal of Systems Science Complexity, 24 (2011), 825. doi: 10.1007/s11424-011-9056-6. Google Scholar

[15]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system,, Journal of Convex Analysis, 19 (2012), 1009. Google Scholar

[16]

B. E. A. Milani and C. E. T. Dorea, On invariant polyhedra of continuous-time linear systems subject to additive disturbances,, Automatica, 32 (1996), 785. doi: 10.1016/0005-1098(96)00002-7. Google Scholar

[17]

B. Nikolai and T. Varvara, Numerical construction of viable sets for autonomous conflict control systems,, Mathematics, 2 (2014), 68. doi: 10.3390/math2020068. Google Scholar

[18]

P. S. Pierre, Hybrid Kernels and Capture Basins for Impulse Constrained Systems,, Proceedings of Hybrid Systems, (2003). Google Scholar

[19]

M. Quincampoix and N. Seube, Stabilization of uncertain control systems through piecewise constant feedback,, Journal of Mathematical Analysis and Applications, 218 (1998), 240. doi: 10.1006/jmaa.1997.5775. Google Scholar

[1]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[2]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[3]

Cédric Villani. Regularity of optimal transport and cut locus: From nonsmooth analysis to geometry to smooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 559-571. doi: 10.3934/dcds.2011.30.559

[4]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[5]

Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467

[6]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[7]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[8]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[9]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[10]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[11]

P. Alonso Ruiz, Y. Chen, H. Gu, R. S. Strichartz, Z. Zhou. Analysis on hybrid fractals. Communications on Pure & Applied Analysis, 2020, 19 (1) : 47-84. doi: 10.3934/cpaa.2020004

[12]

Francesca Faraci, Antonio Iannizzotto. Three nonzero periodic solutions for a differential inclusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 779-788. doi: 10.3934/dcdss.2012.5.779

[13]

Vladimir F. Demyanov, Julia A. Ryabova. Exhausters, coexhausters and converters in nonsmooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1273-1292. doi: 10.3934/dcds.2011.31.1273

[14]

M. Predescu, R. Levins, T. Awerbuch-Friedlander. Analysis of a nonlinear system for community intervention in mosquito control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 605-622. doi: 10.3934/dcdsb.2006.6.605

[15]

Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018168

[16]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

[17]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[18]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[19]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[20]

Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure & Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]