2015, 5(1): 1-9. doi: 10.3934/naco.2015.5.1

Determining the viability for hybrid control systems on a region with piecewise smooth boundary

1. 

School of Management, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China

2. 

Business School, University of Shanghai for Science and Technology, Shanghai, 200093

Received  December 2014 Revised  March 2015 Published  March 2015

This paper is devoted to determining the viability of hybrid control systems on a region which is expressed by inequalities of piecewise smooth functions. Firstly, the viability condition for the differential inclusion is discussed based on nonsmooth analysis. Secondly, the result is generalized to hybrid differential inclusion. Finally, the viability condition of differential inclusion on a region with the max-type function is given.
Citation: Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1
References:
[1]

P. J. Antsaklis and A. Nerode, Guest editorial hybrid control systems: an introductory discussion to the special issue, IEEE Transactions on Automatic Control, 43 (1998), 457-460.

[2]

J. P. Aubin, J. Lggeros, M. Quincampoix, S. Sastry and N. Seube, Impulse differential inclusions: A viability approach to hybrid systems, IEEE Transactions on Automatic Control, 47 (2002), 2-20. doi: 10.1109/9.981719.

[3]

J. P. Aubin, Viability Theory, Boston: Birkhauser, 1991.

[4]

J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer, Berlin, 1993. doi: 10.1007/978-3-662-02959-6.

[5]

F. Blanchini, Set invariance in control, Automatica, 35 (1999), 1747-1767. doi: 10.1016/S0005-1098(99)00113-2.

[6]

R. W. Chaney, Piecewise $C^k$ functions in nonsmooth analysis, Nonlinear Analysis, 15 (1990), 649-660. doi: 10.1016/0362-546X(90)90005-2.

[7]

F. H. Clark, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.

[8]

V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, Frankfurt am Main: Peterlang, 1995.

[9]

Y. Gao, Determining the viability for an affine nonlinear control system (in Chinese), Journal of Control Theory and Applications, 26 (2006), 654-656.

[10]

Y. Gao, Determining the viability for a class of nonlinear control system on a region with nonsmooth boundary (in Chinese), Control and Decision, 21 (2006), 923-925.

[11]

Y. Gao, J. Lggeros, M. Quincampoix and N. Seube, On the control of uncertain impulsive system: approximate stabilization and controlled invariance, International Journal of Control, 77 (2004), 1393-1407. doi: 10.1080/00207170412331317431.

[12]

Y. Gao, J. Lggeros and M. Quincampoix, On the reachability problem of uncertain hybrid systems, IEEE Transactions on Automatic Control, 52 (2007), 1572-1586. doi: 10.1109/TAC.2007.904449.

[13]

Y. Gao, Nonsmooth Optimization (in Chinese), Science Press, Beijing, 2008.

[14]

Y. Gao, Viability criteria for differential inclusions, Journal of Systems Science Complexity, 24 (2011), 825-834. doi: 10.1007/s11424-011-9056-6.

[15]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system, Journal of Convex Analysis, 19 (2012), 1009-1015.

[16]

B. E. A. Milani and C. E. T. Dorea, On invariant polyhedra of continuous-time linear systems subject to additive disturbances, Automatica, 32 (1996), 785-789. doi: 10.1016/0005-1098(96)00002-7.

[17]

B. Nikolai and T. Varvara, Numerical construction of viable sets for autonomous conflict control systems, Mathematics, 2 (2014), 68-82. doi: 10.3390/math2020068.

[18]

P. S. Pierre, Hybrid Kernels and Capture Basins for Impulse Constrained Systems, Proceedings of Hybrid Systems, 2003.

[19]

M. Quincampoix and N. Seube, Stabilization of uncertain control systems through piecewise constant feedback, Journal of Mathematical Analysis and Applications, 218 (1998), 240-255. doi: 10.1006/jmaa.1997.5775.

show all references

References:
[1]

P. J. Antsaklis and A. Nerode, Guest editorial hybrid control systems: an introductory discussion to the special issue, IEEE Transactions on Automatic Control, 43 (1998), 457-460.

[2]

J. P. Aubin, J. Lggeros, M. Quincampoix, S. Sastry and N. Seube, Impulse differential inclusions: A viability approach to hybrid systems, IEEE Transactions on Automatic Control, 47 (2002), 2-20. doi: 10.1109/9.981719.

[3]

J. P. Aubin, Viability Theory, Boston: Birkhauser, 1991.

[4]

J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer, Berlin, 1993. doi: 10.1007/978-3-662-02959-6.

[5]

F. Blanchini, Set invariance in control, Automatica, 35 (1999), 1747-1767. doi: 10.1016/S0005-1098(99)00113-2.

[6]

R. W. Chaney, Piecewise $C^k$ functions in nonsmooth analysis, Nonlinear Analysis, 15 (1990), 649-660. doi: 10.1016/0362-546X(90)90005-2.

[7]

F. H. Clark, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.

[8]

V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, Frankfurt am Main: Peterlang, 1995.

[9]

Y. Gao, Determining the viability for an affine nonlinear control system (in Chinese), Journal of Control Theory and Applications, 26 (2006), 654-656.

[10]

Y. Gao, Determining the viability for a class of nonlinear control system on a region with nonsmooth boundary (in Chinese), Control and Decision, 21 (2006), 923-925.

[11]

Y. Gao, J. Lggeros, M. Quincampoix and N. Seube, On the control of uncertain impulsive system: approximate stabilization and controlled invariance, International Journal of Control, 77 (2004), 1393-1407. doi: 10.1080/00207170412331317431.

[12]

Y. Gao, J. Lggeros and M. Quincampoix, On the reachability problem of uncertain hybrid systems, IEEE Transactions on Automatic Control, 52 (2007), 1572-1586. doi: 10.1109/TAC.2007.904449.

[13]

Y. Gao, Nonsmooth Optimization (in Chinese), Science Press, Beijing, 2008.

[14]

Y. Gao, Viability criteria for differential inclusions, Journal of Systems Science Complexity, 24 (2011), 825-834. doi: 10.1007/s11424-011-9056-6.

[15]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system, Journal of Convex Analysis, 19 (2012), 1009-1015.

[16]

B. E. A. Milani and C. E. T. Dorea, On invariant polyhedra of continuous-time linear systems subject to additive disturbances, Automatica, 32 (1996), 785-789. doi: 10.1016/0005-1098(96)00002-7.

[17]

B. Nikolai and T. Varvara, Numerical construction of viable sets for autonomous conflict control systems, Mathematics, 2 (2014), 68-82. doi: 10.3390/math2020068.

[18]

P. S. Pierre, Hybrid Kernels and Capture Basins for Impulse Constrained Systems, Proceedings of Hybrid Systems, 2003.

[19]

M. Quincampoix and N. Seube, Stabilization of uncertain control systems through piecewise constant feedback, Journal of Mathematical Analysis and Applications, 218 (1998), 240-255. doi: 10.1006/jmaa.1997.5775.

[1]

Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021319

[2]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

[3]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[4]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[5]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[6]

Cédric Villani. Regularity of optimal transport and cut locus: From nonsmooth analysis to geometry to smooth analysis. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 559-571. doi: 10.3934/dcds.2011.30.559

[7]

Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021264

[8]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[9]

Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 569-581. doi: 10.3934/dcdsb.2021055

[10]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[11]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[12]

Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467

[13]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[14]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[15]

Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023

[16]

Vladimir F. Demyanov, Julia A. Ryabova. Exhausters, coexhausters and converters in nonsmooth analysis. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1273-1292. doi: 10.3934/dcds.2011.31.1273

[17]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[18]

P. Alonso Ruiz, Y. Chen, H. Gu, R. S. Strichartz, Z. Zhou. Analysis on hybrid fractals. Communications on Pure and Applied Analysis, 2020, 19 (1) : 47-84. doi: 10.3934/cpaa.2020004

[19]

Yong Ren, Qi Zhang. Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3811-3829. doi: 10.3934/dcdsb.2021207

[20]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

 Impact Factor: 

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]