2015, 5(1): 11-23. doi: 10.3934/naco.2015.5.11

Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems

1. 

College of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China, China

2. 

Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China

3. 

Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Received  December 2014 Revised  March 2015 Published  March 2015

This paper proposes a delay-range dependent method to solve a two-dimensional (2D) stabilization and $H_\infty$ control problem for a class of uncertain delayed systems described by the Roessor model with a range delay. By using a new 2D Lyapunov-Krasovskii function and introducing a differential inequality to the difference Lyapunov functional for 2D systems, sufficient delay-range dependent conditions for the existence of the proposed feedback controller scheme are established in terms of linear matrix inequalities (LMIs), which depend on both the difference between the upper and lower delay bounds and the upper delay bound of the interval time-varying delay. By solving these LMIs, the 2D law is explicitly formulated, together with an adjustable robust $H_\infty$ performance level. The analysis of the application in the thermal process demonstrates the effectiveness of the proposed controller.
Citation: Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11
References:
[1]

S. F. Chen, Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities,, Signal Process, 90 (2010), 2265.   Google Scholar

[2]

S. F. Chen and I. K. Fong, Delay-dependent robust stability and stabilization of two-dimensional with state-delayed systems,, Dynamics of Continuous, 16 (2009), 1.   Google Scholar

[3]

S. F. Chen, Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model,, Applied Mathematics and Computation, 216 (2010), 2613.  doi: 10.1016/j.amc.2010.03.104.  Google Scholar

[4]

A. Dhawan and H. Kar, Optimal guaranteed cost control of 2-D discrete uncertain systems: An LMI approach,, Signal Processing, 87 (2007), 3075.   Google Scholar

[5]

A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model,, Signal Processing, 90 (2010), 2648.   Google Scholar

[6]

A. Dhawan and H. Kar, An improved LMI-based criterion for the design of optimal guaranteed cost controller for 2-D discrete uncertain systems,, Signal Processing, 91 (2011), 1032.   Google Scholar

[7]

A. Dhawa and H. Kar, LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model,, Signal Process, 87 (2007), 479.   Google Scholar

[8]

C. Du, L. Xie and C. Zhang, H control and robust stabilization of two-dimensional system in Roesser models,, Automatica, 37 (2001), 205.  doi: 10.1016/S0005-1098(00)00155-2.  Google Scholar

[9]

C. Du and L. Xie, Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371.   Google Scholar

[10]

Z. X. Duan, Z. R Xiang and H. R Karimi, Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model,, Information Sciences, 272 (2014), 173.  doi: 10.1016/j.ins.2014.02.121.  Google Scholar

[11]

L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems,, IEEE Transactions on Automatic Control, 42 (1997), 1171.  doi: 10.1109/9.618250.  Google Scholar

[12]

X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2-D discrete systems,, IEE Proc. Control Theory Appl., 148 (2001), 355.   Google Scholar

[13]

T. Hinamoto, Stability of 2-D discrete systems described by the Fornasini-Marchesini second model,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254.  doi: 10.1109/81.557373.  Google Scholar

[14]

T. Kaczorek, Two-Dimensional Linear System,, Berlin, (1985).   Google Scholar

[15]

Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems,, International Journal of control, 74 (2001), 1447.  doi: 10.1080/00207170110067116.  Google Scholar

[16]

W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, H-infinity and guaranteed cost control of discrete linear repetitive processes,, Linear Algebra Appl., 412 (2006), 93.  doi: 10.1016/j.laa.2005.01.037.  Google Scholar

[17]

W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2-D discrete state-delayed systems,, Syst. Control Lett., 51 (2004), 278.  doi: 10.1016/j.sysconle.2003.09.003.  Google Scholar

[18]

W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H control of 2-D linear state-delayed systems,, in The 4th IFAC Workshop on Time-Delay Systems (France), (2003), 8.   Google Scholar

[19]

D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2-D uncertain state delayed systems,, Asian J. Control, 9 (2004), 470.  doi: 10.1111/j.1934-6093.2007.tb00436.x.  Google Scholar

[20]

D. Peng and X. Guan, Output feedback H control for 2D state-delayed systems,, Circuits Syst. Signal Process, 28 (2009), 147.  doi: 10.1007/s00034-008-9074-3.  Google Scholar

[21]

L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval time-varying delays,, J. Process Control, 21 (2011), 987.   Google Scholar

[22]

L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures,, J. Process Control, 22 (2012), 1273.   Google Scholar

[23]

L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties,, J. Process Control, 23 (2013), 715.   Google Scholar

[24]

L. M. Wang, X. Chen and F. R. Gao, Delay-range-dependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach,, In Proceedings of 19th IFAC World Congress, (2014), 10994.   Google Scholar

[25]

L. Wu, P. Shi, H. Gao and C. Wang, H mode reduction for two-dimensional discrete state-delayed systems,, IEE Proc. Vis. Image Signal Process, 156 (2006), 769.   Google Scholar

[26]

J. M. Xu and L. Yu, Delay-dependent guaranteed cost control for uncertain 2-D discrete systems with state delay in the FM second model,, Journal of the Franklin Institute, 346 (2009), 159.  doi: 10.1016/j.jfranklin.2008.08.003.  Google Scholar

[27]

J. M. Xu and L. Yu, Delay-dependent robust H control for uncertain 2-D discrete state-delay systems in the second FM model,, Multi-dimensional Syst. Signal Process, 20 (2009), 333.   Google Scholar

[28]

S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays,, Multi-dimensional Syst. Signal Process, 20 (2009), 297.  doi: 10.1007/s11045-008-0063-2.  Google Scholar

[29]

S. X. Ye, J. Z. Li and J. Yao, Robust H control for a class of 2-D discrete delayed systems,, ISA Transactions, 53 (2015), 1456.   Google Scholar

[30]

K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delays,, Chaos, 38 (2008), 650.  doi: 10.1016/j.chaos.2007.01.002.  Google Scholar

show all references

References:
[1]

S. F. Chen, Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities,, Signal Process, 90 (2010), 2265.   Google Scholar

[2]

S. F. Chen and I. K. Fong, Delay-dependent robust stability and stabilization of two-dimensional with state-delayed systems,, Dynamics of Continuous, 16 (2009), 1.   Google Scholar

[3]

S. F. Chen, Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model,, Applied Mathematics and Computation, 216 (2010), 2613.  doi: 10.1016/j.amc.2010.03.104.  Google Scholar

[4]

A. Dhawan and H. Kar, Optimal guaranteed cost control of 2-D discrete uncertain systems: An LMI approach,, Signal Processing, 87 (2007), 3075.   Google Scholar

[5]

A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model,, Signal Processing, 90 (2010), 2648.   Google Scholar

[6]

A. Dhawan and H. Kar, An improved LMI-based criterion for the design of optimal guaranteed cost controller for 2-D discrete uncertain systems,, Signal Processing, 91 (2011), 1032.   Google Scholar

[7]

A. Dhawa and H. Kar, LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model,, Signal Process, 87 (2007), 479.   Google Scholar

[8]

C. Du, L. Xie and C. Zhang, H control and robust stabilization of two-dimensional system in Roesser models,, Automatica, 37 (2001), 205.  doi: 10.1016/S0005-1098(00)00155-2.  Google Scholar

[9]

C. Du and L. Xie, Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371.   Google Scholar

[10]

Z. X. Duan, Z. R Xiang and H. R Karimi, Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model,, Information Sciences, 272 (2014), 173.  doi: 10.1016/j.ins.2014.02.121.  Google Scholar

[11]

L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems,, IEEE Transactions on Automatic Control, 42 (1997), 1171.  doi: 10.1109/9.618250.  Google Scholar

[12]

X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2-D discrete systems,, IEE Proc. Control Theory Appl., 148 (2001), 355.   Google Scholar

[13]

T. Hinamoto, Stability of 2-D discrete systems described by the Fornasini-Marchesini second model,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254.  doi: 10.1109/81.557373.  Google Scholar

[14]

T. Kaczorek, Two-Dimensional Linear System,, Berlin, (1985).   Google Scholar

[15]

Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems,, International Journal of control, 74 (2001), 1447.  doi: 10.1080/00207170110067116.  Google Scholar

[16]

W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, H-infinity and guaranteed cost control of discrete linear repetitive processes,, Linear Algebra Appl., 412 (2006), 93.  doi: 10.1016/j.laa.2005.01.037.  Google Scholar

[17]

W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2-D discrete state-delayed systems,, Syst. Control Lett., 51 (2004), 278.  doi: 10.1016/j.sysconle.2003.09.003.  Google Scholar

[18]

W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H control of 2-D linear state-delayed systems,, in The 4th IFAC Workshop on Time-Delay Systems (France), (2003), 8.   Google Scholar

[19]

D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2-D uncertain state delayed systems,, Asian J. Control, 9 (2004), 470.  doi: 10.1111/j.1934-6093.2007.tb00436.x.  Google Scholar

[20]

D. Peng and X. Guan, Output feedback H control for 2D state-delayed systems,, Circuits Syst. Signal Process, 28 (2009), 147.  doi: 10.1007/s00034-008-9074-3.  Google Scholar

[21]

L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval time-varying delays,, J. Process Control, 21 (2011), 987.   Google Scholar

[22]

L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures,, J. Process Control, 22 (2012), 1273.   Google Scholar

[23]

L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties,, J. Process Control, 23 (2013), 715.   Google Scholar

[24]

L. M. Wang, X. Chen and F. R. Gao, Delay-range-dependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach,, In Proceedings of 19th IFAC World Congress, (2014), 10994.   Google Scholar

[25]

L. Wu, P. Shi, H. Gao and C. Wang, H mode reduction for two-dimensional discrete state-delayed systems,, IEE Proc. Vis. Image Signal Process, 156 (2006), 769.   Google Scholar

[26]

J. M. Xu and L. Yu, Delay-dependent guaranteed cost control for uncertain 2-D discrete systems with state delay in the FM second model,, Journal of the Franklin Institute, 346 (2009), 159.  doi: 10.1016/j.jfranklin.2008.08.003.  Google Scholar

[27]

J. M. Xu and L. Yu, Delay-dependent robust H control for uncertain 2-D discrete state-delay systems in the second FM model,, Multi-dimensional Syst. Signal Process, 20 (2009), 333.   Google Scholar

[28]

S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays,, Multi-dimensional Syst. Signal Process, 20 (2009), 297.  doi: 10.1007/s11045-008-0063-2.  Google Scholar

[29]

S. X. Ye, J. Z. Li and J. Yao, Robust H control for a class of 2-D discrete delayed systems,, ISA Transactions, 53 (2015), 1456.   Google Scholar

[30]

K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delays,, Chaos, 38 (2008), 650.  doi: 10.1016/j.chaos.2007.01.002.  Google Scholar

[1]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[5]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[8]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[9]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[10]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[15]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[16]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[17]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[18]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[19]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[20]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

 Impact Factor: 

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]