Citation: |
[1] |
S. F. Chen, Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities, Signal Process, 90 (2010), 2265-2275. |
[2] |
S. F. Chen and I. K. Fong, Delay-dependent robust stability and stabilization of two-dimensional with state-delayed systems, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 16 (2009), 1-17. |
[3] |
S. F. Chen, Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model, Applied Mathematics and Computation, 216 (2010), 2613-2622.doi: 10.1016/j.amc.2010.03.104. |
[4] |
A. Dhawan and H. Kar, Optimal guaranteed cost control of 2-D discrete uncertain systems: An LMI approach, Signal Processing, 87 (2007), 3075-3085. |
[5] |
A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model, Signal Processing, 90 (2010), 2648-2654. |
[6] |
A. Dhawan and H. Kar, An improved LMI-based criterion for the design of optimal guaranteed cost controller for 2-D discrete uncertain systems, Signal Processing, 91 (2011), 1032-1035. |
[7] |
A. Dhawa and H. Kar, LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model, Signal Process, 87 (2007), 479-488. |
[8] |
C. Du, L. Xie and C. Zhang, H_{∞} control and robust stabilization of two-dimensional system in Roesser models, Automatica, 37 (2001), 205-211.doi: 10.1016/S0005-1098(00)00155-2. |
[9] |
C. Du and L. Xie, Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371-1374. |
[10] |
Z. X. Duan, Z. R Xiang and H. R Karimi, Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model, Information Sciences, 272 (2014), 173-184.doi: 10.1016/j.ins.2014.02.121. |
[11] |
L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Transactions on Automatic Control, 42 (1997), 1171-1176.doi: 10.1109/9.618250. |
[12] |
X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2-D discrete systems, IEE Proc. Control Theory Appl., 148 (2001), 355-361. |
[13] |
T. Hinamoto, Stability of 2-D discrete systems described by the Fornasini-Marchesini second model, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254-257.doi: 10.1109/81.557373. |
[14] |
T. Kaczorek, Two-Dimensional Linear System, Berlin, Germany: Springer-Verlag, 1985. |
[15] |
Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of control, 74 (2001), 1447-1455.doi: 10.1080/00207170110067116. |
[16] |
W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, H-infinity and guaranteed cost control of discrete linear repetitive processes, Linear Algebra Appl., 412 (2006), 93-131.doi: 10.1016/j.laa.2005.01.037. |
[17] |
W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2-D discrete state-delayed systems, Syst. Control Lett., 51 (2004), 278-291.doi: 10.1016/j.sysconle.2003.09.003. |
[18] |
W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H_{∞} control of 2-D linear state-delayed systems, in The 4th IFAC Workshop on Time-Delay Systems (France), September, (2003), 8-10. |
[19] |
D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2-D uncertain state delayed systems, Asian J. Control, 9 (2004), 470-474.doi: 10.1111/j.1934-6093.2007.tb00436.x. |
[20] |
D. Peng and X. Guan, Output feedback H_{∞} control for 2D state-delayed systems, Circuits Syst. Signal Process, 28 (2009), 147-167.doi: 10.1007/s00034-008-9074-3. |
[21] |
L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval time-varying delays, J. Process Control, 21 (2011), 987-996. |
[22] |
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures, J. Process Control, 22 (2012), 1273-1286. |
[23] |
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties, J. Process Control, 23 (2013), 715-730. |
[24] |
L. M. Wang, X. Chen and F. R. Gao, Delay-range-dependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach, In Proceedings of 19th IFAC World Congress, (2014), 10994-10999. |
[25] |
L. Wu, P. Shi, H. Gao and C. Wang, H_{∞} mode reduction for two-dimensional discrete state-delayed systems, IEE Proc. Vis. Image Signal Process, 156 (2006), 769-784. |
[26] |
J. M. Xu and L. Yu, Delay-dependent guaranteed cost control for uncertain 2-D discrete systems with state delay in the FM second model, Journal of the Franklin Institute, 346 (2009), 159-174.doi: 10.1016/j.jfranklin.2008.08.003. |
[27] |
J. M. Xu and L. Yu, Delay-dependent robust H_{∞} control for uncertain 2-D discrete state-delay systems in the second FM model, Multi-dimensional Syst. Signal Process, 20 (2009), 333-349. |
[28] |
S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays, Multi-dimensional Syst. Signal Process, 20 (2009), 297-307.doi: 10.1007/s11045-008-0063-2. |
[29] |
S. X. Ye, J. Z. Li and J. Yao, Robust H_{∞} control for a class of 2-D discrete delayed systems, ISA Transactions, 53 (2015), 1456-1462. |
[30] |
K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delays, Chaos, Solitons and Fractals, 38 (2008), 650-657.doi: 10.1016/j.chaos.2007.01.002. |