Citation: |
[1] |
C. Ashcraft and J. W. H. Liu, Using domain decomposition to find graph bisectors, BIT Numerical Mathematics, 37 (1997), 506-534.doi: 10.1007/BF02510238. |
[2] |
P. Austrin, S. Benabbas and K. Georgiou, Better balance by being biased: a 0.8776-approximation for max bisection, in Proceedings of SODA, (2013), 277-294. Full version available as arXiv eprint 1205.0458v2. |
[3] |
F. Barahona, M. Grötschel, M. Jünger and G. Reinelt, An application of combinatorial optimization to statistical physics and circuit layout design, Operations Research, 36 (1988), 493-513. |
[4] |
R. Battiti and A. Bertossi, Differential greedy for the 0-1 equicut problem, in Proceeding of the DIMACS Workshop on Network Design: Connectivity and Facilities Location (eds. D. Z. Du and P. M. Pardalos), 1997. |
[5] |
L. Brunetta, M. Conforti and G. Rinaldi, A branch-and-cut algorithm for the equicut problem, Mathematical Programming, 78 (1997), 243-263.doi: 10.1016/S0025-5610(97)00017-8. |
[6] |
K. C. Chang and D. H-C. Du, Efficient algorithms for layer assignment problems, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6 (1987), 67-78. |
[7] |
P. Chardaire, M. Barake and G. P. McKeown, A PROBE-based heuristic for graph partitioning, IEEE Transactions on Computers, 56 (2007), 1707-1720.doi: 10.1109/TC.2007.70760. |
[8] |
R. K. F. Chung, Spectral Graph Theory, 92, AMS Bookstore, 1997. |
[9] |
C. Dang, L. He and I. K. Hui, A deterministic annealing algorithm for approximating a solution of the max-bisection problem, Neural Networks, 15 (2002), 441-458. |
[10] |
A. Duarte, F. Fernández, Á. Sánchez and A. Sanz, A hierarchical social metaheuristic for the max-cut problem, Lecture Notes in computer Science, 3004 (2004), 84-94. |
[11] |
U. Feige, M. Karpinski and M. Langberg, A note on approximating max-bisection on regular graphs, Information Processing Letters, 79 (2001), 181-188.doi: 10.1016/S0020-0190(00)00189-7. |
[12] |
C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving network partitions, in Proceedings of the 19th Design Automation Conference, (1982), 175-181. |
[13] |
A. Frieze and M. Jerrum, Improved approximation algorithm for max k-cut and max-bisection, Algorithmica, 18 (1997), 67-81.doi: 10.1007/BF02523688. |
[14] |
M. X. Goemans and D. P. Williamson, Improved approximation algorithms for Max-Cut and satisfiability problems using semidefinite programming, Journal of the ACM, 42 (1995), 1115-1145.doi: 10.1145/227683.227684. |
[15] |
E. Halperin and U. Zwick, A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems, Random Structures and Algorithms, 20 (2002), 382-402.doi: 10.1002/rsa.10035. |
[16] |
J. Hastad, Some optimal inapproachability results, in Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, ACM, New York, (1997), 1-10. |
[17] |
C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM Journal on Optimization, 10 (2000), 673-696.doi: 10.1137/S1052623497328987. |
[18] |
B. Hendrickson and R. Leland, An improved spectral graph partitioning algorithm for mapping parallel computations, SIAM Journal on Scientific Computing, 16 (1995), 452-469.doi: 10.1137/0916028. |
[19] |
J. H. Holland, Adaptation in Natural Artificial System, The University of Michigan Press (Second edition; MIT press), 1992. |
[20] |
K. Jansen, M. Karpinski, A. Lingas and E. Seidel, Polynomial time approximation schemes for Max-Bisection on planar and geometric graphs, SIAM Journal on Computing, 35 (2005), 110-119.doi: 10.1137/S009753970139567X. |
[21] |
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations (eds. R. E. Miller and J. W. Thatcher), Plenum Press, (1972), 85-103. |
[22] |
M. Karpinski, M. Kowaluk and A. Lingas, Approximation algorithms for MAX-BISECTION on low degree regular graphs, Fundamenta Informaticae, 62 (2004), 369-375. |
[23] |
B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, The Bell System Technical Journal, 49 (1970), 291-307. |
[24] |
S. Khot, G. Kindler, E. Mossel and R. O'Donnell, Optimal inapproximability results for MAX-CUT and other 2-variable CSPs, SIAM Journal on Computing, 37 (2007), 319-357.doi: 10.1137/S0097539705447372. |
[25] |
D. E. Knuth, Seminumerical Algorithms, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, MA, 1997. |
[26] |
K. Krishnan and J. Mitchell, A semidefinite programming based polyhedral cut and price approach for the Max-Cut problem, Computational Optimization and Applications, 33 (2006), 51-71.doi: 10.1007/s10589-005-5958-3. |
[27] |
R. B. Lin and S. Y. Chen, Conjugate conflict continuation graphs for multilayer constrained via minimization, Information Sciences, 177 (2007), 2436-2447.doi: 10.1016/j.ins.2007.01.013. |
[28] |
G. Lin and W. Zhu, An efficient memetic algorithm for solving the Max-Bisection problem, IEEE Transactions on Computers, 63 (2014), 1365-1376.doi: 10.1109/TC.2013.7. |
[29] |
A. F. Ling, C. X. Xu and L. Tang, A modified VNS metaheuristic for max-bisection problems, Journal of Computational and Applied Mathematics, 220 (2008), 413-421.doi: 10.1016/j.cam.2007.08.018. |
[30] |
R. Marti, A. Duarte and M. Laguna, Advanced scatter search for the max-cut problem, INFORMS Journal on Computing, 21 (2009), 26-38.doi: 10.1287/ijoc.1080.0275. |
[31] |
P. Moscato and C. Cotta, A gentle introduction to memetic algorithms, in Handbook of Metaheuristics (eds. F. Glover and G. A. Kochenberger), Kluwer, Norwell, Massachusetts, USA, 2003.doi: 10.1007/0-306-48056-5_5. |
[32] |
K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Mathematical Programming, 39 (1987), 117-129.doi: 10.1007/BF02592948. |
[33] |
F. Neri, C. Cotta and P. Moscato, Handbook of Memetic Algorithms, Studies in Computational Intelligence, 379, Springer, 2011.doi: 10.1007/978-3-642-23247-3. |
[34] |
G. Palubeckis and V. Krivickiene, Application of multistart tabu search to the Max Cut problem, Information Technology and Control, 2 (2004), 29-35. |
[35] |
P. Raghavendra and N. Tan, Approximating CSPs with global cardinality constraints using SDP hierarchies, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2012, 373-387. |
[36] |
V. P. Shylo and O. V. Shylo, Solving the max-cut problem by the global equilibrium search, Cybernetics and Systems Analysis, 46 (2010), 744-754. |
[37] |
K. Sörensen and M. Sevaux, MA|PM: memetic algorithms with population management, Computers and Operations Research, 33 (2006), 1214-1225. |
[38] |
C. C. de Souza, R. Keunings, L. A. Wolsey and O. Zone, A new approach to minimizing the front width in finite element calculations, Computer Methods in Applied Mechanics and Engineering, 111 (1994), 323-334.doi: 10.1016/0045-7825(94)90137-6. |
[39] |
D. Spielman, Spectral Graph Theory, Lecture Notes, Yale University, 2009. |
[40] |
E. W. Weisstein, Laplacian Matrix, MathWorld-A Wolfram Web Resource, 1995. |
[41] |
Q. Wu and J. K. Hao, Memetic search for the max-bisection problem, Computers and Operations Research, 40 (2013), 166-179.doi: 10.1016/j.cor.2012.06.001. |
[42] |
F. Xu, X. Ma and B. Chen, A new Lagrangian net algorithm for solving max-bisection problems, Journal of Computational and Applied Mathematics, 235 (2011), 3718-3723.doi: 10.1016/j.cam.2011.01.015. |
[43] |
Y. Y. Ye, A 0.699-approximation algorithm for Max-Bisection, Mathematical Programming, 90 (2001), 101-111.doi: 10.1007/PL00011415. |