Citation: |
[1] |
B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-Linear Parametric Optimization, Akademie Verlag, Berlin, 1982. |
[2] |
J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, New York, 1997. |
[3] |
X. Chen, L. Qi and R. S. Womersley, Newton's method for quadratic stochastic programs with recourse, J. Comput. Appl. Math., 60 (1995), 29-46.doi: 10.1016/0377-0427(94)00082-C. |
[4] |
X. Chen and R. S. Womersley, Random test problems and parallel methods for quadratic programs and quadratic stochastic programs, Optim. Method Softw., 13 (2000), 275-306.doi: 10.1080/10556780008805789. |
[5] |
G. M. Cho, Log-barrier method for two-stage quadratic stochastic programming, Appl. Math. Comput., 164 (2005), 45-69.doi: 10.1016/j.amc.2004.04.095. |
[6] |
A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998.doi: 10.1007/978-1-4612-5320-4. |
[7] |
M. A. Goberna, M. A. López, Linear Semi-Infinite Optimization, John Wiley and sons, Chichester, 1998. |
[8] |
Y. Han and Z. Chen, Quantitative stability of full random two-stage stochastic programs with recourse, Optim. Lett., to appear. |
[9] |
P. Kall and S. W. Wallace, Stochastic Programming, John Wiley and Sons, Chichester, 1994. |
[10] |
W. K. Klein Haneveld and M. H. Van der Vlerk, Stochastic integer programming: general models and algorithms, Ann. Oper. Res., 85 (1999), 39-57.doi: 10.1023/A:1018930113099. |
[11] |
O. L. Mangasarian and T. H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs, and complementary problems, SIAM J. Control Optim., 25 (1987), 583-595.doi: 10.1137/0325033. |
[12] |
S. Mehrotra and M. G. Özevin, Decomposition-based interior point methods for two-stage stochastic convex quadratic programs with recourse, Oper. Res., 57 (2009), 964-974.doi: 10.1287/opre.1080.0659. |
[13] |
E. L. Plambeck, B. R. Fu, S. M. Robinson and R. Suri, Sample-path optimization of convex stochastic performances functions, Math. Program., 75 (1996), 137-176.doi: 10.1016/S0025-5610(96)00010-X. |
[14] |
A. Prekopa, Stochastic Programming, Kluwer Academic Publishers, Dordrecht, Boston. 1995.doi: 10.1007/978-94-017-3087-7. |
[15] |
L. Qi and R. S. Womersley, An SQP algorithm for extended linear-quadratic problems in stochastic programming, Ann. Oper. Res., 56 (1995), 251-285.doi: 10.1007/BF02031711. |
[16] |
S. T. Rachev, W. Römisch, Quantitative stability in stochastic programming: the methods of probability metrics, Math. Oper. Res., 27 (2002), 792-818.doi: 10.1287/moor.27.4.792.304. |
[17] |
S. M. Robinson, Analysis of sample-path optimization, Math. Oper. Res., 21 (1996), 513-528.doi: 10.1287/moor.21.3.513. |
[18] |
R. T. Rockafeller and R.J-B. Wets, A lagrangian finite generation technique for solving linear-quadratic problems in stochastic programming, Math. Program. study, 28 (1986), 63-93. |
[19] |
R. T. Rockafeller and R. J-B. Wets, Variational Analysis, Springer, Berlin, 1998.doi: 10.1007/978-3-642-02431-3. |
[20] |
W. Römisch, Stability of stochastic programming, in Stochastic Programming: Handbooks in Operations Research and Management Science Vol.10 (eds. A. Rusczyński, A. Shapiro), North-Holland Publishing Company, Amsterdam, (2003), 483-554.doi: 10.1016/S0927-0507(03)10008-4. |
[21] |
W. Römisch and R. Schultz, Distribution sensitivity in stochastic programming, Math. Program., 50 (1991), 197-226.doi: 10.1007/BF01594935. |
[22] |
W. Römisch and R. Schultz, Lipschitz stability for stochastic programs with complete recourse, SIAM J. Optim., 6 (1996), 531-547.doi: 10.1137/0806028. |
[23] |
W. Römisch and R. J.-B. Wets, Stability of ε-approximate solutions to convex stochastic programs, SIAM J. Optim., 18 (2007), 961-979.doi: 10.1137/060657716. |
[24] |
A. Shapiro, Monte Carlo sampling methods, in Stochastic Programming: Handbooks in Operations Research and Management Science Vol.10 (eds. A. Rusczyński, A. Shapiro), North-Holland Publishing Company, Amsterdam, (2003), 353-425.doi: 10.1016/S0927-0507(03)10006-0. |
[25] |
A. Shapiro and T. Homem-de-Mello, On rate of convergence of Monte Carlo approximations of stochastic programs, SIAM J. Optim., 6 (1996), 531-547. |
[26] |
A. Shapiro, Complexity of two and multi-stage stochastic programming problems, 2005. Available from: //www2.isye.gatech.edu/~ashapiro/publications.html. |