- Previous Article
- NACO Home
- This Issue
-
Next Article
Continuity and stability of two-stage stochastic programs with quadratic continuous recourse
Primal-dual interior-point algorithms for convex quadratic circular cone optimization
1. | Department of Mathematics, Shanghai University, Shanghai 200444, China, China |
2. | College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 |
References:
[1] |
Math. Program., 95 (2003), 3-51.
doi: 10.1007/s10107-002-0339-5. |
[2] |
Internat. Ser. Oper. Res. Management Sci., 166 (2012).
doi: 10.1007/978-1-4614-0769-0. |
[3] |
Science Press, Beijing, 2010. Google Scholar |
[4] |
SIAM J. Optim., 15 (2004), 101-128.
doi: 10.1137/S1052623403423114. |
[5] |
Nonlinear Anal., 70 (2009), 3584-3602.
doi: 10.1016/j.na.2008.07.016. |
[6] |
IEEE Trans. Robot., 23 (2007), 1117-1132. Google Scholar |
[7] |
Nonlinear Anal., 85 (2013), 160-173.
doi: 10.1016/j.na.2013.01.017. |
[8] |
Positivity, 1 (1997), 331-357.
doi: 10.1023/A:1009701824047. |
[9] |
European J. Oper. Res., 214(2011), 473-484.
doi: 10.1016/j.ejor.2011.02.022. |
[10] |
Jpn. J. Ind. Appl. Math., 29 (2012), 499-517.
doi: 10.1007/s13160-012-0081-1. |
[11] |
Optim. Method Softw., 27 (2012) 893-917.
doi: 10.1080/10556788.2011.567270. |
[12] |
SIAM J. Optim., 13 (2002), 179-203.
doi: 10.1137/S1052623401383236. |
[13] |
John Wiley & Sons, 1997. |
[14] |
Math. Program., 96 (2003), 409-438.
doi: 10.1007/s10107-003-0380-z. |
[15] |
Math. Program., 150 (2015), 391-422.
doi: 10.1007/s10107-014-0773-1. |
[16] |
Appl. Math. Comput., 215 (2009), 1047-1061.
doi: 10.1016/j.amc.2009.06.034. |
[17] |
Nonlinear Anal., 71 (2009), 3389-3402.
doi: 10.1016/j.na.2009.01.241. |
[18] |
Numer. Algorithms, 57 (2011), 537-558.
doi: 10.1007/s11075-010-9444-3. |
[19] |
Linear Algebra Appl., 433 (2010), 718-736.
doi: 10.1016/j.laa.2010.03.042. |
[20] |
Proceedings of 2010 IEEE Multi-Conference on Systems and Control, (2010), 13-19. Google Scholar |
[21] |
J. Optim. Theory Appl., 158 (2013), 816-858.
doi: 10.1007/s10957-013-0278-8. |
[22] |
Abstr. Appl. Anal., 2014 (2014), 21pages.
doi: 10.1155/2014/603542. |
[23] |
J. Nonlinear Convex Anal., 14 (2013), 807-816. |
[24] |
J. Inequal. Appl., 2013 (2013), 17 pages.
doi: 10.1186/1029-242X-2013-571. |
[25] |
Optim., 64 (2014), 113-147.
doi: 10.1080/02331934.2014.951043. |
show all references
References:
[1] |
Math. Program., 95 (2003), 3-51.
doi: 10.1007/s10107-002-0339-5. |
[2] |
Internat. Ser. Oper. Res. Management Sci., 166 (2012).
doi: 10.1007/978-1-4614-0769-0. |
[3] |
Science Press, Beijing, 2010. Google Scholar |
[4] |
SIAM J. Optim., 15 (2004), 101-128.
doi: 10.1137/S1052623403423114. |
[5] |
Nonlinear Anal., 70 (2009), 3584-3602.
doi: 10.1016/j.na.2008.07.016. |
[6] |
IEEE Trans. Robot., 23 (2007), 1117-1132. Google Scholar |
[7] |
Nonlinear Anal., 85 (2013), 160-173.
doi: 10.1016/j.na.2013.01.017. |
[8] |
Positivity, 1 (1997), 331-357.
doi: 10.1023/A:1009701824047. |
[9] |
European J. Oper. Res., 214(2011), 473-484.
doi: 10.1016/j.ejor.2011.02.022. |
[10] |
Jpn. J. Ind. Appl. Math., 29 (2012), 499-517.
doi: 10.1007/s13160-012-0081-1. |
[11] |
Optim. Method Softw., 27 (2012) 893-917.
doi: 10.1080/10556788.2011.567270. |
[12] |
SIAM J. Optim., 13 (2002), 179-203.
doi: 10.1137/S1052623401383236. |
[13] |
John Wiley & Sons, 1997. |
[14] |
Math. Program., 96 (2003), 409-438.
doi: 10.1007/s10107-003-0380-z. |
[15] |
Math. Program., 150 (2015), 391-422.
doi: 10.1007/s10107-014-0773-1. |
[16] |
Appl. Math. Comput., 215 (2009), 1047-1061.
doi: 10.1016/j.amc.2009.06.034. |
[17] |
Nonlinear Anal., 71 (2009), 3389-3402.
doi: 10.1016/j.na.2009.01.241. |
[18] |
Numer. Algorithms, 57 (2011), 537-558.
doi: 10.1007/s11075-010-9444-3. |
[19] |
Linear Algebra Appl., 433 (2010), 718-736.
doi: 10.1016/j.laa.2010.03.042. |
[20] |
Proceedings of 2010 IEEE Multi-Conference on Systems and Control, (2010), 13-19. Google Scholar |
[21] |
J. Optim. Theory Appl., 158 (2013), 816-858.
doi: 10.1007/s10957-013-0278-8. |
[22] |
Abstr. Appl. Anal., 2014 (2014), 21pages.
doi: 10.1155/2014/603542. |
[23] |
J. Nonlinear Convex Anal., 14 (2013), 807-816. |
[24] |
J. Inequal. Appl., 2013 (2013), 17 pages.
doi: 10.1186/1029-242X-2013-571. |
[25] |
Optim., 64 (2014), 113-147.
doi: 10.1080/02331934.2014.951043. |
[1] |
Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101 |
[2] |
Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739 |
[3] |
Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37 |
[4] |
Lin Zhu, Xinzhen Zhang. Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021030 |
[5] |
Yanqin Bai, Lipu Zhang. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. Journal of Industrial & Management Optimization, 2011, 7 (4) : 891-906. doi: 10.3934/jimo.2011.7.891 |
[6] |
Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601 |
[7] |
Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089 |
[8] |
Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010 |
[9] |
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171 |
[10] |
Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015 |
[11] |
Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011 |
[12] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111 |
[13] |
Xiaoling Guo, Zhibin Deng, Shu-Cherng Fang, Wenxun Xing. Quadratic optimization over one first-order cone. Journal of Industrial & Management Optimization, 2014, 10 (3) : 945-963. doi: 10.3934/jimo.2014.10.945 |
[14] |
Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial & Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269 |
[15] |
Ye Tian, Shu-Cherng Fang, Zhibin Deng, Wenxun Xing. Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming. Journal of Industrial & Management Optimization, 2013, 9 (3) : 703-721. doi: 10.3934/jimo.2013.9.703 |
[16] |
Xi-De Zhu, Li-Ping Pang, Gui-Hua Lin. Two approaches for solving mathematical programs with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 951-968. doi: 10.3934/jimo.2015.11.951 |
[17] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1 |
[18] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[19] |
Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949 |
[20] |
Yinghong Xu, Lipu Zhang, Jing Zhang. A full-modified-Newton step infeasible interior-point algorithm for linear optimization. Journal of Industrial & Management Optimization, 2016, 12 (1) : 103-116. doi: 10.3934/jimo.2016.12.103 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]