2015, 5(3): 237-249. doi: 10.3934/naco.2015.5.237

A quasi-Newton trust region method based on a new fractional model

1. 

Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. 

Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received  October 2014 Revised  March 2015 Published  August 2015

In this paper, a general fractional model is proposed. Based on the fractional model, a quasi-Newton trust region algorithm is presented for unconstrained optimization. The trust region subproblem is solved in the simplified way. We discussed the choices of the parameters in the fractional model and prove the global convergence of the proposed algorithm. Some primary test results shows the feasibility and validity of the fractional model.
Citation: Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237
References:
[1]

W. C. Davidon, Conic approximations and collinear scalings for optimizers,, \emph{SIAM Journal on Numerical Analysis}, 17 (1980), 268.  doi: 10.1137/0717023.  Google Scholar

[2]

S. Di and W. Y. Sun, A trust region method for conic model to solve unconstraind optimizaions,, \emph{Optimization Methods and Software}, 6 (1996), 237.  doi: 10.1080/10556789608805637.  Google Scholar

[3]

D. M. Gay, Computing optimal locally constrained steps,, \emph{SIAM Journal on Scientific and Statistical Computing}, 2 (1981), 186.  doi: 10.1137/0902016.  Google Scholar

[4]

H. Gourgeon and J. Nocedal, A conic algorithm for optimization,, \emph{SIAM Journal on Scientific and Statistical Computing}, 6 (1985), 253.  doi: 10.1137/0906019.  Google Scholar

[5]

X. P. Lu, Q. Ni and H. Liu, A dogleg method for solving new trust region subproblems of conic model,, \emph{ACTA Mathematicae Applicatae Sinica}, 30 (2009), 855.   Google Scholar

[6]

X. P. Lu and Q. Ni, A quasi-newton trust region method with a new conic model for the unconstrained optimization,, \emph{Applied Mathematics and Computation}, 204 (2008), 373.  doi: 10.1016/j.amc.2008.06.062.  Google Scholar

[7]

J. J. More, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software,, \emph{ACM Trans. Math. Software}, 7 (1981), 17.  doi: 10.1145/355934.355936.  Google Scholar

[8]

Q. Ni, Optimality conditions for trust-region subproblems involving a conic model,, \emph{SIAM Journal on Optimization}, 15 (2005), 826.  doi: 10.1137/S1052623402418991.  Google Scholar

[9]

Q. Ni, Optimization Method and Program Design,, Science Press, (2009).   Google Scholar

[10]

J. M. Peng and Y. X. Yuan, Optimality conditions for the minimization of a quadratic with two quadratic constraints,, \emph{SIAM Journal on Optimization}, 7 (1997), 579.  doi: 10.1137/S1052623494261520.  Google Scholar

[11]

M. J. D. Powell, Convergence properties of a class of minimization algorithms,, in \emph{Nonlinear Programming 2}, (1975), 1.   Google Scholar

[12]

M. J. D. Powell and Y. X. Yuan, A trust region algorithm for equality constrained optimization,, \emph{Mathematical Programming}, 49 (1990), 189.  doi: 10.1007/BF01588787.  Google Scholar

[13]

R. Schnabel, Conic methods for unconstrained minimization and tensor methods for nonlinear equations,, In \emph{Mathematical Programming: The State of the Art}, (1982), 417.   Google Scholar

[14]

D. C. Sorensen, Newton's method with a model trust region modification,, \emph{SIAM Journal on Numerical Analysis}, 19 (1982), 409.  doi: 10.1137/0719026.  Google Scholar

[15]

W. Y. Sun and Y. X. Yuan, A conic trust-region method for nonlinearly constrained optimization,, \emph{Annals of Operations Research}, 103 (2001), 175.  doi: 10.1023/A:1012955122229.  Google Scholar

[16]

F. S. Wang, K. C. Zhang, C. L. Wang and L. Wang, A variant of trust-region methods for unconstrained optimization,, \emph{Applied Mathematics and Computation}, 203 (2008), 297.  doi: 10.1016/j.amc.2008.04.049.  Google Scholar

[17]

J. Y. Wang and Q. Ni, An algorithm for solving new trust region subproblem with conic model,, \emph{Science in China, 51 (2008), 461.  doi: 10.1007/s11425-007-0149-6.  Google Scholar

[18]

H. P. Wu and Q. Ni, A new trust region algorithm with conic model,, \emph{Numerical Mathematics: A Journal of Chinese Universities}, 30 (2008), 57.   Google Scholar

[19]

C. X. Xu and X. Y. Yang, Convergence of conic quasi-Newton trust region methods for unconstrained minimization,, \emph{Mathematical Application}, 11 (1998), 71.   Google Scholar

[20]

Y. X. Yuan, A review of trust region algorithms for optimization,, \emph{ICIAM}, 99 (2000), 271.   Google Scholar

[21]

L. W. Zhang and Q. Ni, Trust region algorithm of new conic model for nonliearly equality constrained optimization,, \emph{Journal on Numerical Methods and Computer Applications}, 31 (2010), 279.   Google Scholar

[22]

X. Zhang, J. Wen and Q. Ni, Subspace trust-region algorithm with conic model for unconstrained optimization,, \emph{Numerical Algebra, 3 (2013), 223.  doi: 10.3934/naco.2013.3.223.  Google Scholar

[23]

L. J. Zhao and W. Y. Sun, Nonmonotone retrospective conic trust region method for unconstrained optimization,, \emph{Numerical Algebra, 3 (2013), 309.  doi: 10.3934/naco.2013.3.309.  Google Scholar

[24]

X. Zhao and X. Y. Wang, A nonmonotone self-adaptive search based on trust region algorithm with line the new conic model,, \emph{Journal of Taiyuan University of Science and Technology}, 31 (2010), 68.   Google Scholar

[25]

M. F. Zhu, Y. Xue and F. S. Zhang, A quasi-Newton type trust region method based on the conic model,, \emph{Numerical Mathematics A Journal of Chinese Universities, 17 (1995), 36.   Google Scholar

show all references

References:
[1]

W. C. Davidon, Conic approximations and collinear scalings for optimizers,, \emph{SIAM Journal on Numerical Analysis}, 17 (1980), 268.  doi: 10.1137/0717023.  Google Scholar

[2]

S. Di and W. Y. Sun, A trust region method for conic model to solve unconstraind optimizaions,, \emph{Optimization Methods and Software}, 6 (1996), 237.  doi: 10.1080/10556789608805637.  Google Scholar

[3]

D. M. Gay, Computing optimal locally constrained steps,, \emph{SIAM Journal on Scientific and Statistical Computing}, 2 (1981), 186.  doi: 10.1137/0902016.  Google Scholar

[4]

H. Gourgeon and J. Nocedal, A conic algorithm for optimization,, \emph{SIAM Journal on Scientific and Statistical Computing}, 6 (1985), 253.  doi: 10.1137/0906019.  Google Scholar

[5]

X. P. Lu, Q. Ni and H. Liu, A dogleg method for solving new trust region subproblems of conic model,, \emph{ACTA Mathematicae Applicatae Sinica}, 30 (2009), 855.   Google Scholar

[6]

X. P. Lu and Q. Ni, A quasi-newton trust region method with a new conic model for the unconstrained optimization,, \emph{Applied Mathematics and Computation}, 204 (2008), 373.  doi: 10.1016/j.amc.2008.06.062.  Google Scholar

[7]

J. J. More, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software,, \emph{ACM Trans. Math. Software}, 7 (1981), 17.  doi: 10.1145/355934.355936.  Google Scholar

[8]

Q. Ni, Optimality conditions for trust-region subproblems involving a conic model,, \emph{SIAM Journal on Optimization}, 15 (2005), 826.  doi: 10.1137/S1052623402418991.  Google Scholar

[9]

Q. Ni, Optimization Method and Program Design,, Science Press, (2009).   Google Scholar

[10]

J. M. Peng and Y. X. Yuan, Optimality conditions for the minimization of a quadratic with two quadratic constraints,, \emph{SIAM Journal on Optimization}, 7 (1997), 579.  doi: 10.1137/S1052623494261520.  Google Scholar

[11]

M. J. D. Powell, Convergence properties of a class of minimization algorithms,, in \emph{Nonlinear Programming 2}, (1975), 1.   Google Scholar

[12]

M. J. D. Powell and Y. X. Yuan, A trust region algorithm for equality constrained optimization,, \emph{Mathematical Programming}, 49 (1990), 189.  doi: 10.1007/BF01588787.  Google Scholar

[13]

R. Schnabel, Conic methods for unconstrained minimization and tensor methods for nonlinear equations,, In \emph{Mathematical Programming: The State of the Art}, (1982), 417.   Google Scholar

[14]

D. C. Sorensen, Newton's method with a model trust region modification,, \emph{SIAM Journal on Numerical Analysis}, 19 (1982), 409.  doi: 10.1137/0719026.  Google Scholar

[15]

W. Y. Sun and Y. X. Yuan, A conic trust-region method for nonlinearly constrained optimization,, \emph{Annals of Operations Research}, 103 (2001), 175.  doi: 10.1023/A:1012955122229.  Google Scholar

[16]

F. S. Wang, K. C. Zhang, C. L. Wang and L. Wang, A variant of trust-region methods for unconstrained optimization,, \emph{Applied Mathematics and Computation}, 203 (2008), 297.  doi: 10.1016/j.amc.2008.04.049.  Google Scholar

[17]

J. Y. Wang and Q. Ni, An algorithm for solving new trust region subproblem with conic model,, \emph{Science in China, 51 (2008), 461.  doi: 10.1007/s11425-007-0149-6.  Google Scholar

[18]

H. P. Wu and Q. Ni, A new trust region algorithm with conic model,, \emph{Numerical Mathematics: A Journal of Chinese Universities}, 30 (2008), 57.   Google Scholar

[19]

C. X. Xu and X. Y. Yang, Convergence of conic quasi-Newton trust region methods for unconstrained minimization,, \emph{Mathematical Application}, 11 (1998), 71.   Google Scholar

[20]

Y. X. Yuan, A review of trust region algorithms for optimization,, \emph{ICIAM}, 99 (2000), 271.   Google Scholar

[21]

L. W. Zhang and Q. Ni, Trust region algorithm of new conic model for nonliearly equality constrained optimization,, \emph{Journal on Numerical Methods and Computer Applications}, 31 (2010), 279.   Google Scholar

[22]

X. Zhang, J. Wen and Q. Ni, Subspace trust-region algorithm with conic model for unconstrained optimization,, \emph{Numerical Algebra, 3 (2013), 223.  doi: 10.3934/naco.2013.3.223.  Google Scholar

[23]

L. J. Zhao and W. Y. Sun, Nonmonotone retrospective conic trust region method for unconstrained optimization,, \emph{Numerical Algebra, 3 (2013), 309.  doi: 10.3934/naco.2013.3.309.  Google Scholar

[24]

X. Zhao and X. Y. Wang, A nonmonotone self-adaptive search based on trust region algorithm with line the new conic model,, \emph{Journal of Taiyuan University of Science and Technology}, 31 (2010), 68.   Google Scholar

[25]

M. F. Zhu, Y. Xue and F. S. Zhang, A quasi-Newton type trust region method based on the conic model,, \emph{Numerical Mathematics A Journal of Chinese Universities, 17 (1995), 36.   Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[5]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[9]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

 Impact Factor: 

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]