Advanced Search
Article Contents
Article Contents

On the global convergence of a parameter-adjusting Levenberg-Marquardt method

Abstract / Introduction Related Papers Cited by
  • The Levenberg-Marquardt (LM) method is a classical but popular method for solving nonlinear equations. Based on the trust region technique, we propose a parameter-adjusting LM (PALM) method, in which the LM parameter $\mu_k$ is self-adjusted at each iteration based on the ratio between actual reduction and predicted reduction. Under the level-bounded condition, we prove the global convergence of PALM. We also propose a modified parameter-adjusting LM (MPALM) method. Numerical results show that the two methods are very efficient.
    Mathematics Subject Classification: Primary: 90C30, 65K05.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Fan, The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence, Math. Comp., 81 (2012), 447-466.doi: 10.1090/S0025-5718-2011-02496-8.


    J. Fan, Accelerating the modified Levenberg-Marquardt method for nonlinear equations, Math. Comp., 83 (2014), 1173-1187.doi: 10.1090/S0025-5718-2013-02752-4.


    J. Fan and J. Pan, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition, Comput. Optim. Appl., 34 (2006), 47-62.doi: 10.1007/s10589-005-3074-z.


    J. Fan and Y. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23-39.doi: 10.1007/s00607-004-0083-1.


    K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2 (1944), 164-166.


    D. W. Marquardt, An algorithm for least-squares estimation of nonlinear inequalities, SIAM J. Appl. Math., 11 (1963), 431-441.


    J. J. Moré, Recent developments in algorithms and software for trust region methods, in Mathematical Programming: the state of the art (Bonn, 1982), Springer, Berlin, (1983), 258-287.


    J. J. Moré, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software, 7 (1981), 17-41.doi: 10.1145/355934.355936.


    J. Nocedal and S. J. Wright, Numerical optimization, 2nd edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.


    N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, in Topics in numerical analysis, Comput. Suppl., Springer, Vienna, 15 (2001), 239-249.doi: 10.1007/978-3-7091-6217-0_18.

  • 加载中

Article Metrics

HTML views() PDF downloads(175) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint