\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the global convergence of a parameter-adjusting Levenberg-Marquardt method

Abstract / Introduction Related Papers Cited by
  • The Levenberg-Marquardt (LM) method is a classical but popular method for solving nonlinear equations. Based on the trust region technique, we propose a parameter-adjusting LM (PALM) method, in which the LM parameter $\mu_k$ is self-adjusted at each iteration based on the ratio between actual reduction and predicted reduction. Under the level-bounded condition, we prove the global convergence of PALM. We also propose a modified parameter-adjusting LM (MPALM) method. Numerical results show that the two methods are very efficient.
    Mathematics Subject Classification: Primary: 90C30, 65K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Fan, The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence, Math. Comp., 81 (2012), 447-466.doi: 10.1090/S0025-5718-2011-02496-8.

    [2]

    J. Fan, Accelerating the modified Levenberg-Marquardt method for nonlinear equations, Math. Comp., 83 (2014), 1173-1187.doi: 10.1090/S0025-5718-2013-02752-4.

    [3]

    J. Fan and J. Pan, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition, Comput. Optim. Appl., 34 (2006), 47-62.doi: 10.1007/s10589-005-3074-z.

    [4]

    J. Fan and Y. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23-39.doi: 10.1007/s00607-004-0083-1.

    [5]

    K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2 (1944), 164-166.

    [6]

    D. W. Marquardt, An algorithm for least-squares estimation of nonlinear inequalities, SIAM J. Appl. Math., 11 (1963), 431-441.

    [7]

    J. J. Moré, Recent developments in algorithms and software for trust region methods, in Mathematical Programming: the state of the art (Bonn, 1982), Springer, Berlin, (1983), 258-287.

    [8]

    J. J. Moré, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software, 7 (1981), 17-41.doi: 10.1145/355934.355936.

    [9]

    J. Nocedal and S. J. Wright, Numerical optimization, 2nd edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.

    [10]

    N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, in Topics in numerical analysis, Comput. Suppl., Springer, Vienna, 15 (2001), 239-249.doi: 10.1007/978-3-7091-6217-0_18.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(175) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return