\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Matrix group monotonicity using a dominance notion

Abstract / Introduction Related Papers Cited by
  • A dominance rule for group invertible matrices using proper splitting is proposed, and used this notion to show that a matrix is group monotone. Then some possible applications are discussed.
    Mathematics Subject Classification: Primary: 15A09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications, Springer-Verlag, New York, 2003.

    [2]

    A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems, SIAM J. Numer. Anal., 11 (1974), 145-154.

    [3]

    A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse, SIAM J. Appl. Math., 22 (1972), 155-161.

    [4]

    A. Berman and R. J. Plemmons, Matrix group monotonicity, Proceedings of the American Mathematical Society, 46 (1974), 355-359.

    [5]

    A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.doi: 10.1137/1.9781611971262.

    [6]

    G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12-18.

    [7]

    L. Collatz, Functional Analysis and Numerical Mathematics, Academic, New York, 1966.

    [8]

    L. Jena and D. Mishra, BD-splittings of matrices, Linear Algebra and Applications, 437 (2012), 1162-1173.doi: 10.1016/j.laa.2012.04.009.

    [9]

    O. L. Mangasarian, Characterization of real matrices of monotone kind, SIAM Review, 10 (1968), 439-441.

    [10]

    D. Mishra and K. C. Sivakumar, A dominance notion of singular matrices with applications to nonnegative generalized inverses, Linear and Multilinear Algebra, 60 (2012), 911-920.doi: 10.1080/03081087.2011.632378.

    [11]

    W. C. Pye, Nonnegative Drazin inverses, Linear Algebra Appl., 30 (1980), 149-153.doi: 10.1016/0024-3795(80)90190-1.

    [12]

    F. Szidarovszky and K. Okuguchi, A general scheme for matrices with nonnegative inverse, PU.M.A. Ser. B, 1 (1990), 109-114.

    [13]

    R. S. Varga, Matrix Iterative Analysis, Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-642-05156-2.

    [14]

    Y. Wei, Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput., 95 (1998), 115-124.doi: 10.1016/S0096-3003(97)10098-4.

    [15]

    Y. Wei and H. Wu, Additional results on index splittings for Drazin inverse solutions of singular linear systems, Electron. J. Linear Algebra, 85 (2001), 83-93.

    [16]

    Y. Wei and H. Wu, Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index, Journal of Computational and Applied Mathematics, 114 (2000), 305-318.doi: 10.1016/S0377-0427(99)90237-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(193) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return