Citation: |
[1] |
A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications, Springer-Verlag, New York, 2003. |
[2] |
A. Berman and R. J. Plemmons, Cones and iterative methods for best square least squares solutions of linear systems, SIAM J. Numer. Anal., 11 (1974), 145-154. |
[3] |
A. Berman and R. J. Plemmons, Monotonicity and the generalized inverse, SIAM J. Appl. Math., 22 (1972), 155-161. |
[4] |
A. Berman and R. J. Plemmons, Matrix group monotonicity, Proceedings of the American Mathematical Society, 46 (1974), 355-359. |
[5] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.doi: 10.1137/1.9781611971262. |
[6] |
G. Chen and X. Chen, A new splitting for singular linear system and Drazin inverse, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996), 12-18. |
[7] |
L. Collatz, Functional Analysis and Numerical Mathematics, Academic, New York, 1966. |
[8] |
L. Jena and D. Mishra, BD-splittings of matrices, Linear Algebra and Applications, 437 (2012), 1162-1173.doi: 10.1016/j.laa.2012.04.009. |
[9] |
O. L. Mangasarian, Characterization of real matrices of monotone kind, SIAM Review, 10 (1968), 439-441. |
[10] |
D. Mishra and K. C. Sivakumar, A dominance notion of singular matrices with applications to nonnegative generalized inverses, Linear and Multilinear Algebra, 60 (2012), 911-920.doi: 10.1080/03081087.2011.632378. |
[11] |
W. C. Pye, Nonnegative Drazin inverses, Linear Algebra Appl., 30 (1980), 149-153.doi: 10.1016/0024-3795(80)90190-1. |
[12] |
F. Szidarovszky and K. Okuguchi, A general scheme for matrices with nonnegative inverse, PU.M.A. Ser. B, 1 (1990), 109-114. |
[13] |
R. S. Varga, Matrix Iterative Analysis, Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-642-05156-2. |
[14] |
Y. Wei, Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput., 95 (1998), 115-124.doi: 10.1016/S0096-3003(97)10098-4. |
[15] |
Y. Wei and H. Wu, Additional results on index splittings for Drazin inverse solutions of singular linear systems, Electron. J. Linear Algebra, 85 (2001), 83-93. |
[16] |
Y. Wei and H. Wu, Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index, Journal of Computational and Applied Mathematics, 114 (2000), 305-318.doi: 10.1016/S0377-0427(99)90237-6. |