
Previous Article
A survey on rank and inertia optimization problems of the matrixvalued function $A + BXB^{*}$
 NACO Home
 This Issue

Next Article
Matrix group monotonicity using a dominance notion
Output regulation for discretetime nonlinear stochastic optimal control problems with modelreality differences
1.  Department of Mathematics, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Malaysia 
2.  Department of Mathematics, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Malaysia 
References:
[1] 
V. M. Becerra and P. D. Roberts, Dynamic integrated system optimization and parameter estimation for discrete time optimal control of nonlinear systems, Int. J. Control, 63 (1996), 257281. doi: 10.1080/00207179608921843. 
[2] 
A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Company, New York, 1975. 
[3] 
S. L. Kek and A. A. Mohd Ismail, Optimal control of discretetime linear stochastic dynamic system with modelreality differences, in Proceeding of International Conference on Machine Learning and Computing (ICML 2009), 1012 July, 2009, Perth, Australia, 573578. 
[4] 
S. L. Kek, K. L. Teo and A. A. Mohd Ismail, An integrated optimal control algorithm for discretetime nonlinear stochastic system, International Journal of Control, 83 (2010), 25362545. doi: 10.1080/00207179.2010.531766. 
[5] 
S. L. Kek, K. L. Teo and A. A. Mohd Ismail, Filtering solution of nonlinear stochastic optimal control problem in discretetime with modelreality differences, Numerical Algebra, Control and Optimization, 2 (2012), 207222. doi: 10.3934/naco.2012.2.207. 
[6] 
S. L. Kek, A. A. Mohd Ismail, K. L. Teo and A. Rohanin, An iterative algorithm based on modelreality differences for discretetime nonlinear stochastic optimal control problems, Numerical Algebra, Control and Optimization, 3 (2013), 109125. doi: 10.3934/naco.2013.3.109. 
[7] 
D. E. Kirk, Optimal Control Theory: An Introduction, Mineola, NY: Dover Publications, 2004. 
[8] 
F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd ed, John Wiley & Sons 1995. 
[9] 
A. A. Mohd Ismail and S. L. Kek, Optimal control of nonlinear discretetime stochastic system with modelreality differences, in 2009 IEEE International Conference on Control and Automation, 911 December, 2009, Christchurch, New Zealand, 722726. 
[10] 
A. A. Mohd Ismail, A. Rohanin, S. L. Kek and K. L. Teo, Computational integrated optimal control and estimation with model information for discretetime nonlinear stochastic dynamic system, in Proceeding of the 2010 IRAST Internation Congress on Computer Applications and Computational Science (CACS 2010), 46 December, 2010, Singapore, 899902. 
[11] 
P. D. Roberts and T. W. C. Williams, On an algorithm for combined system optimization and parameter estimation, Automatica, 17 (1981), 199209. doi: 10.1016/00051098(81)900959. 
[12] 
P. D. Roberts, Optimal control of nonlinear systems with modelreality differences, Proceedings of the 31st IEEE Conference on Decision and Control, 1 (1992), 257258. 
show all references
References:
[1] 
V. M. Becerra and P. D. Roberts, Dynamic integrated system optimization and parameter estimation for discrete time optimal control of nonlinear systems, Int. J. Control, 63 (1996), 257281. doi: 10.1080/00207179608921843. 
[2] 
A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Company, New York, 1975. 
[3] 
S. L. Kek and A. A. Mohd Ismail, Optimal control of discretetime linear stochastic dynamic system with modelreality differences, in Proceeding of International Conference on Machine Learning and Computing (ICML 2009), 1012 July, 2009, Perth, Australia, 573578. 
[4] 
S. L. Kek, K. L. Teo and A. A. Mohd Ismail, An integrated optimal control algorithm for discretetime nonlinear stochastic system, International Journal of Control, 83 (2010), 25362545. doi: 10.1080/00207179.2010.531766. 
[5] 
S. L. Kek, K. L. Teo and A. A. Mohd Ismail, Filtering solution of nonlinear stochastic optimal control problem in discretetime with modelreality differences, Numerical Algebra, Control and Optimization, 2 (2012), 207222. doi: 10.3934/naco.2012.2.207. 
[6] 
S. L. Kek, A. A. Mohd Ismail, K. L. Teo and A. Rohanin, An iterative algorithm based on modelreality differences for discretetime nonlinear stochastic optimal control problems, Numerical Algebra, Control and Optimization, 3 (2013), 109125. doi: 10.3934/naco.2013.3.109. 
[7] 
D. E. Kirk, Optimal Control Theory: An Introduction, Mineola, NY: Dover Publications, 2004. 
[8] 
F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd ed, John Wiley & Sons 1995. 
[9] 
A. A. Mohd Ismail and S. L. Kek, Optimal control of nonlinear discretetime stochastic system with modelreality differences, in 2009 IEEE International Conference on Control and Automation, 911 December, 2009, Christchurch, New Zealand, 722726. 
[10] 
A. A. Mohd Ismail, A. Rohanin, S. L. Kek and K. L. Teo, Computational integrated optimal control and estimation with model information for discretetime nonlinear stochastic dynamic system, in Proceeding of the 2010 IRAST Internation Congress on Computer Applications and Computational Science (CACS 2010), 46 December, 2010, Singapore, 899902. 
[11] 
P. D. Roberts and T. W. C. Williams, On an algorithm for combined system optimization and parameter estimation, Automatica, 17 (1981), 199209. doi: 10.1016/00051098(81)900959. 
[12] 
P. D. Roberts, Optimal control of nonlinear systems with modelreality differences, Proceedings of the 31st IEEE Conference on Decision and Control, 1 (1992), 257258. 
[1] 
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on modelreality differences for discretetime nonlinear stochastic optimal control problems. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 109125. doi: 10.3934/naco.2013.3.109 
[2] 
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo. A gradient algorithm for optimal control problems with modelreality differences. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 251266. doi: 10.3934/naco.2015.5.251 
[3] 
Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discretetime with modelreality differences. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 207222. doi: 10.3934/naco.2012.2.207 
[4] 
N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations and Control Theory, 2012, 1 (2) : 235250. doi: 10.3934/eect.2012.1.235 
[5] 
Toufik Bakir, Bernard Bonnard, Jérémy Rouot. A case study of optimal inputoutput system with sampleddata control: Ding et al. force and fatigue muscular control model. Networks and Heterogeneous Media, 2019, 14 (1) : 79100. doi: 10.3934/nhm.2019005 
[6] 
Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 115. doi: 10.3934/jimo.2008.4.1 
[7] 
Kangbo Bao, Libin Rong, Qimin Zhang. Analysis of a stochastic SIRS model with interval parameters. Discrete and Continuous Dynamical Systems  B, 2019, 24 (9) : 48274849. doi: 10.3934/dcdsb.2019033 
[8] 
James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 445462. doi: 10.3934/naco.2013.3.445 
[9] 
Margherita Carletti, Matteo Montani, Valentina Meschini, Marzia Bianchi, Lucia Radici. Stochastic modelling of PTEN regulation in brain tumors: A model for glioblastoma multiforme. Mathematical Biosciences & Engineering, 2015, 12 (5) : 965981. doi: 10.3934/mbe.2015.12.965 
[10] 
Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHughNagumo model with recovery variable. Evolution Equations and Control Theory, 2018, 7 (4) : 571585. doi: 10.3934/eect.2018027 
[11] 
Guangzhou Chen, Guijian Liu, Jiaquan Wang, Ruzhong Li. Identification of water quality model parameters using artificial bee colony algorithm. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 157165. doi: 10.3934/naco.2012.2.157 
[12] 
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869898. doi: 10.3934/ipi.2016025 
[13] 
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the SakawaShindo algorithm in stochastic control. Mathematical Control and Related Fields, 2016, 6 (3) : 391406. doi: 10.3934/mcrf.2016008 
[14] 
Jiongmin Yong. Stochastic optimal control — A concise introduction. Mathematical Control and Related Fields, 2020 doi: 10.3934/mcrf.2020027 
[15] 
Yuan Zhao, Shunfu Jin, Wuyi Yue. Adjustable admission control with threshold in centralized CR networks: Analysis and optimization. Journal of Industrial and Management Optimization, 2015, 11 (4) : 13931408. doi: 10.3934/jimo.2015.11.1393 
[16] 
Yanqin Bai, Yudan Wei, Qian Li. An optimal tradeoff model for portfolio selection with sensitivity of parameters. Journal of Industrial and Management Optimization, 2017, 13 (2) : 947965. doi: 10.3934/jimo.2016055 
[17] 
Yi Zhang, XiaoLi Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete and Continuous Dynamical Systems  S, 2019, 12 (4&5) : 14271440. doi: 10.3934/dcdss.2019098 
[18] 
Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control and Related Fields, 2020, 10 (2) : 379403. doi: 10.3934/mcrf.2020002 
[19] 
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437446. doi: 10.3934/proc.2013.2013.437 
[20] 
Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations and Control Theory, 2014, 3 (1) : 3558. doi: 10.3934/eect.2014.3.35 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]