2015, 5(4): 339-349. doi: 10.3934/naco.2015.5.339

Optimal control of microbial fed-batch culture involving multiple feeds

1. 

College of Information Science and Engineering, Shandong University of Science and Technology, Qindao, Shandong 266510, China, China, China

Received  December 2014 Revised  October 2015 Published  October 2015

In this paper, we consider optimal control problem in the fed-batch fermentation of glycerol by Klebsiella pneumoniae with open loop glycerol input and pH logic control, while the feeding volume of glycerol is regarded as the control variable. To maximize the concentration of 1,3-PD at the terminal time, an optimal control model is established, and a computational approach is constructed to solve the control model. Finally, the numerical simulations show that the terminal concentration of producing 1,3-PD has been increased obviously by employing the optimal feeding strategy.
Citation: Jinggui Gao, Xiaoyan Zhao, Jinggang Zhai. Optimal control of microbial fed-batch culture involving multiple feeds. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 339-349. doi: 10.3934/naco.2015.5.339
References:
[1]

H. Biebl, K. Menzel, A. P. Zeng and W. D. Deckwer, Microbial production of 1, 3-propanediol,, Applied Microbiology and Biotechnology, 52 (1999), 289. Google Scholar

[2]

G. M. Cheng, L. Wang and Q. Lin and R. C. Loxton, Robust optimal control of a microbial batch culture process,, Journal of Optimization Theory and Applications, 167 (2015), 342. doi: 10.1007/s10957-014-0654-z. Google Scholar

[3]

X. Y. Dang, The calculation of ph of some kinds solution,, Journal of Gansu Normal Colleges, 2 (2007), 45. Google Scholar

[4]

C. X. Gao, E. M. Feng, Z. T. Wang and Z. L. Xiu, Nonlinear dynamical systems of biodissimilation of glycerol to 1,3-propanediol and their optimal controls,, Journal of Industrial and Management Optimization, 1 (2005), 377. doi: 10.3934/jimo.2005.1.377. Google Scholar

[5]

C. Gao, K. Li, E. Feng and Z. Xiu, Nonlinear impulsive system of fed-batch culture in fermentative production and its properties,, Chaos, 28 (2006), 271. doi: 10.1016/j.chaos.2005.05.027. Google Scholar

[6]

C. Gao, E. Feng, Z. Wang and Z. Xiu, Nonlinear dynamical systems of bio-dissimilation of glycerol to 1, 3-propanediol and their optimal controls,, Journal of Industrial and Management Optimization, 1 (2005), 377. doi: 10.3934/jimo.2005.1.377. Google Scholar

[7]

J. G. Gao, B. Y. Shen, E. M. Feng and Z. L. Xiu, Modelling and optimal control for an impulsive dynamical system in microbial fed-batch culture,, Computational and Applied Mathematics, 32 (2013), 275. doi: 10.1007/s40314-013-0012-z. Google Scholar

[8]

J. G. Gao, X. Y. Zhao, E. M. Feng and Z. L. Xiu, Modelling and parameter identification for a hybrid dynamical system in microbial fed-batch culture,, International Journal of Computer Mathematics, (2015). doi: 10.1080/00207160.2014.998656. Google Scholar

[9]

J. G. Gao, E. M. Feng and Z. L. Xiu, Metabolic system identification and optimization in continuous culture,, International Journal of Computer Mathematics, 89 (2012), 1426. doi: 10.1080/00207160.2012.689289. Google Scholar

[10]

H. Huang, C. S. Gong and G. T. Tsao, Production of 1, 3-propanediol by klebsiella pneumoniae,, Applied biochemistry and biotechnology, 98 (2002), 687. Google Scholar

[11]

J. Kennedy and R. Eberhart, Particle swarm optimization,, In Neural Networks, 4 (1995), 1942. Google Scholar

[12]

Q. H. Li, L. Li, T. K. Tai and S. L. Xie, An improved pso-based of harmony search for complicated optimization problems,, International Journal of Hybrid Information Technology, 1 (2008), 91. Google Scholar

[13]

C. Y. Liu, Z. H. Gong, E. M. Feng and H. C. Yin, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture,, Journal of Industrial and Management Optimization, 5 (2009), 835. doi: 10.3934/jimo.2009.5.835. Google Scholar

[14]

A. P. Nikolai, A. P. Viktor, M. S. Anatolii and V. S. Natalia, Differential Equations with Impulse Effects,, De Gruyter, (2010). doi: 10.1515/9783110218176. Google Scholar

[15]

S. J. Pirt et al, Principles of Microbe and Cell Cultivation,, Blackwell Scientific Publications, (1975). Google Scholar

[16]

S. Sattayasamitsathit, P. Methacanon and P. Prasertsan, Enhance 1,3-propanediol production from crude glycerol in batch and fed-batch fermentation with two-phase ph-controlled strategy,, Electronic Journal of Biotechnology, 6 (2011), 1. Google Scholar

[17]

A. I. Selvakumar and K. Thanushkodi, A new particle swarm optimization solution to nonconvex economic dispatch problems,, Power Systems, 22 (2007), 42. Google Scholar

[18]

G. Wang, E. M. Feng and Z. L. Xiu, Modeling and parameter identification of microbial biconversion in fed-batch cultures,, Process Control, 18 (2008), 458. Google Scholar

[19]

H. Wang, E. Feng and Z. Xiu, Optimality condition of the nonlinear impulsive system in fed-batch fermentation,, Nonlinear Analysis: Theory, 68 (2008), 12. doi: 10.1016/j.na.2006.10.027. Google Scholar

[20]

L. Wang, Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness,, Bioprocess Biosyst. Eng., 36 (2013), 433. Google Scholar

[21]

L. Wang, J. Ye, E. Feng and Z. Xiu, An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification,, Nonlinear Analysis: Hybrid Systems, 3 (2009), 455. doi: 10.1016/j.nahs.2009.03.003. Google Scholar

[22]

L. Wang, G. M. Cheng, E. M. Feng, Tao Su and Z. L. Xiu, Analysis and application of biological robustness as performance index in microbial fermentation,, Applied Mathematical Modelling, 39 (2015), 2048. doi: 10.1016/j.apm.2014.10.022. Google Scholar

[23]

Z. L. Xiu, A. P. Zeng and L. J. An, Mathematical modelling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol,, Journal of Dalian University of Technology, 40 (2000), 428. Google Scholar

[24]

X. H. Yang, Z. F. Yang and J. Q. Li, Solving nonlinear optimal problems by hybrid accelerating genetic algorithm,, Journal of Beijing Normal University, 39 (2003), 551. Google Scholar

[25]

J. Ye, Y. Zhang, E. Feng, Z. Xiu and H. Yin, Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control,, Applied Mathematical Modelling, 36 (2011), 357. doi: 10.1016/j.apm.2011.05.059. Google Scholar

[26]

J. Yu, L. Xi and S. Wang, An improved particle swarm optimization for evolving feedforward artificial neural networks,, Neural Processing Letters, 26 (2007), 217. Google Scholar

[27]

A. P. Zeng and W. D. Deckwer, A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions,, Biotechnology progress, 11 (1995), 71. Google Scholar

[28]

A. P. Zeng, A. Ross, H. Biebl, C. Tag, B. Guenzel and W. D. Deckwer, Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation,, Biotechnology and bioengineering, 44 (1994), 902. Google Scholar

[29]

A. P. Zeng and H. Biebl, Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends,, Tools and Applications of Biochemical Engineering Science, 15 (2002), 239. Google Scholar

show all references

References:
[1]

H. Biebl, K. Menzel, A. P. Zeng and W. D. Deckwer, Microbial production of 1, 3-propanediol,, Applied Microbiology and Biotechnology, 52 (1999), 289. Google Scholar

[2]

G. M. Cheng, L. Wang and Q. Lin and R. C. Loxton, Robust optimal control of a microbial batch culture process,, Journal of Optimization Theory and Applications, 167 (2015), 342. doi: 10.1007/s10957-014-0654-z. Google Scholar

[3]

X. Y. Dang, The calculation of ph of some kinds solution,, Journal of Gansu Normal Colleges, 2 (2007), 45. Google Scholar

[4]

C. X. Gao, E. M. Feng, Z. T. Wang and Z. L. Xiu, Nonlinear dynamical systems of biodissimilation of glycerol to 1,3-propanediol and their optimal controls,, Journal of Industrial and Management Optimization, 1 (2005), 377. doi: 10.3934/jimo.2005.1.377. Google Scholar

[5]

C. Gao, K. Li, E. Feng and Z. Xiu, Nonlinear impulsive system of fed-batch culture in fermentative production and its properties,, Chaos, 28 (2006), 271. doi: 10.1016/j.chaos.2005.05.027. Google Scholar

[6]

C. Gao, E. Feng, Z. Wang and Z. Xiu, Nonlinear dynamical systems of bio-dissimilation of glycerol to 1, 3-propanediol and their optimal controls,, Journal of Industrial and Management Optimization, 1 (2005), 377. doi: 10.3934/jimo.2005.1.377. Google Scholar

[7]

J. G. Gao, B. Y. Shen, E. M. Feng and Z. L. Xiu, Modelling and optimal control for an impulsive dynamical system in microbial fed-batch culture,, Computational and Applied Mathematics, 32 (2013), 275. doi: 10.1007/s40314-013-0012-z. Google Scholar

[8]

J. G. Gao, X. Y. Zhao, E. M. Feng and Z. L. Xiu, Modelling and parameter identification for a hybrid dynamical system in microbial fed-batch culture,, International Journal of Computer Mathematics, (2015). doi: 10.1080/00207160.2014.998656. Google Scholar

[9]

J. G. Gao, E. M. Feng and Z. L. Xiu, Metabolic system identification and optimization in continuous culture,, International Journal of Computer Mathematics, 89 (2012), 1426. doi: 10.1080/00207160.2012.689289. Google Scholar

[10]

H. Huang, C. S. Gong and G. T. Tsao, Production of 1, 3-propanediol by klebsiella pneumoniae,, Applied biochemistry and biotechnology, 98 (2002), 687. Google Scholar

[11]

J. Kennedy and R. Eberhart, Particle swarm optimization,, In Neural Networks, 4 (1995), 1942. Google Scholar

[12]

Q. H. Li, L. Li, T. K. Tai and S. L. Xie, An improved pso-based of harmony search for complicated optimization problems,, International Journal of Hybrid Information Technology, 1 (2008), 91. Google Scholar

[13]

C. Y. Liu, Z. H. Gong, E. M. Feng and H. C. Yin, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture,, Journal of Industrial and Management Optimization, 5 (2009), 835. doi: 10.3934/jimo.2009.5.835. Google Scholar

[14]

A. P. Nikolai, A. P. Viktor, M. S. Anatolii and V. S. Natalia, Differential Equations with Impulse Effects,, De Gruyter, (2010). doi: 10.1515/9783110218176. Google Scholar

[15]

S. J. Pirt et al, Principles of Microbe and Cell Cultivation,, Blackwell Scientific Publications, (1975). Google Scholar

[16]

S. Sattayasamitsathit, P. Methacanon and P. Prasertsan, Enhance 1,3-propanediol production from crude glycerol in batch and fed-batch fermentation with two-phase ph-controlled strategy,, Electronic Journal of Biotechnology, 6 (2011), 1. Google Scholar

[17]

A. I. Selvakumar and K. Thanushkodi, A new particle swarm optimization solution to nonconvex economic dispatch problems,, Power Systems, 22 (2007), 42. Google Scholar

[18]

G. Wang, E. M. Feng and Z. L. Xiu, Modeling and parameter identification of microbial biconversion in fed-batch cultures,, Process Control, 18 (2008), 458. Google Scholar

[19]

H. Wang, E. Feng and Z. Xiu, Optimality condition of the nonlinear impulsive system in fed-batch fermentation,, Nonlinear Analysis: Theory, 68 (2008), 12. doi: 10.1016/j.na.2006.10.027. Google Scholar

[20]

L. Wang, Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness,, Bioprocess Biosyst. Eng., 36 (2013), 433. Google Scholar

[21]

L. Wang, J. Ye, E. Feng and Z. Xiu, An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification,, Nonlinear Analysis: Hybrid Systems, 3 (2009), 455. doi: 10.1016/j.nahs.2009.03.003. Google Scholar

[22]

L. Wang, G. M. Cheng, E. M. Feng, Tao Su and Z. L. Xiu, Analysis and application of biological robustness as performance index in microbial fermentation,, Applied Mathematical Modelling, 39 (2015), 2048. doi: 10.1016/j.apm.2014.10.022. Google Scholar

[23]

Z. L. Xiu, A. P. Zeng and L. J. An, Mathematical modelling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol,, Journal of Dalian University of Technology, 40 (2000), 428. Google Scholar

[24]

X. H. Yang, Z. F. Yang and J. Q. Li, Solving nonlinear optimal problems by hybrid accelerating genetic algorithm,, Journal of Beijing Normal University, 39 (2003), 551. Google Scholar

[25]

J. Ye, Y. Zhang, E. Feng, Z. Xiu and H. Yin, Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and ph logic control,, Applied Mathematical Modelling, 36 (2011), 357. doi: 10.1016/j.apm.2011.05.059. Google Scholar

[26]

J. Yu, L. Xi and S. Wang, An improved particle swarm optimization for evolving feedforward artificial neural networks,, Neural Processing Letters, 26 (2007), 217. Google Scholar

[27]

A. P. Zeng and W. D. Deckwer, A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions,, Biotechnology progress, 11 (1995), 71. Google Scholar

[28]

A. P. Zeng, A. Ross, H. Biebl, C. Tag, B. Guenzel and W. D. Deckwer, Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation,, Biotechnology and bioengineering, 44 (1994), 902. Google Scholar

[29]

A. P. Zeng and H. Biebl, Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends,, Tools and Applications of Biochemical Engineering Science, 15 (2002), 239. Google Scholar

[1]

Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369

[2]

Chongyang Liu, Zhaohua Gong, Enmin Feng, Hongchao Yin. Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. Journal of Industrial & Management Optimization, 2009, 5 (4) : 835-850. doi: 10.3934/jimo.2009.5.835

[3]

Chongyang Liu, Meijia Han. Time-delay optimal control of a fed-batch production involving multiple feeds. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020099

[4]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[5]

Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571

[6]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[7]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020109

[8]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[9]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[10]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[11]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[12]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[13]

Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585

[14]

J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341

[15]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[16]

Yanan Mao, Caixia Gao, Ruidong Yan, Aruna Bai. Modeling and identification of hybrid dynamic system in microbial continuous fermentation. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 359-368. doi: 10.3934/naco.2015.5.359

[17]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[18]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[19]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[20]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]