2015, 5(4): 351-357. doi: 10.3934/naco.2015.5.351

Solving the seepage problems with free surface by mathematical programming method

1. 

College of Science, Dalian Nationalities University, Dalian 116600, China, China

Received  January 2015 Revised  October 2015 Published  October 2015

The nonsmooth equations model for seepage problems is proposed based on the basic principles of the seepage dynamic system and the finite element discrete method. The mathematical programming method is therefore applied. The free surface of seepage is plotted through interpolation with pressure intensity on the nodes. The numerical results show the new method is simple and rapid in convergence rate.
Citation: Jinzhi Wang, Yuduo Zhang. Solving the seepage problems with free surface by mathematical programming method. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 351-357. doi: 10.3934/naco.2015.5.351
References:
[1]

K. J. Bathe, Finite element free surface seepage analysis without mesh iteration,, Int. J. Numer and Analytical Methods in Geomechanics, 3 (1979), 13.   Google Scholar

[2]

W. J. Chen and Z. L. Wang, Finite element method of invariable mesh Gauss point for transient seepage problem with free surface,, Journal of dalian university of technology, 31 (1991), 537.   Google Scholar

[3]

C. S. Desai and G. C. Li, A residual flow procedure and application for free surface in porous media,, Advances in Water Resources, 6 (1983), 27.   Google Scholar

[4]

J. S. Pang and L. Q. Qi, Non-smooth equations: motivation and algorithms,, SIAM. J. OPTIM., 3 (1993), 443.  doi: 10.1137/0803021.  Google Scholar

[5]

H. Peng et al, Imaginary element for numerical analysis of seepage with free surface,, China Rural Water and Hydropower, 3 (1997), 26.   Google Scholar

[6]

L. Q. Qi, Convergence analysis of some algorithms for solving non-smooth equation,, Math Oper Res., 18 (1993), 227.  doi: 10.1287/moor.18.1.227.  Google Scholar

[7]

J. Z. Wang and W. J. Chen, Mixed fixed-Point FE method for seepage problems with free surfaces,, Journal of Dalian University of Technology, 47 (2007), 793.   Google Scholar

[8]

Y. T. Zhang, P. Chen and L. Wang, Initial flow method for seepage analysis with free surface,, Chinese journal of Hydraulic, 8 (1988), 18.   Google Scholar

[9]

H. Zheng et al., A new formulation of Signorini's type for seepage problems with free surface,, International Journal for Numerical methods in engineering, (2005).   Google Scholar

show all references

References:
[1]

K. J. Bathe, Finite element free surface seepage analysis without mesh iteration,, Int. J. Numer and Analytical Methods in Geomechanics, 3 (1979), 13.   Google Scholar

[2]

W. J. Chen and Z. L. Wang, Finite element method of invariable mesh Gauss point for transient seepage problem with free surface,, Journal of dalian university of technology, 31 (1991), 537.   Google Scholar

[3]

C. S. Desai and G. C. Li, A residual flow procedure and application for free surface in porous media,, Advances in Water Resources, 6 (1983), 27.   Google Scholar

[4]

J. S. Pang and L. Q. Qi, Non-smooth equations: motivation and algorithms,, SIAM. J. OPTIM., 3 (1993), 443.  doi: 10.1137/0803021.  Google Scholar

[5]

H. Peng et al, Imaginary element for numerical analysis of seepage with free surface,, China Rural Water and Hydropower, 3 (1997), 26.   Google Scholar

[6]

L. Q. Qi, Convergence analysis of some algorithms for solving non-smooth equation,, Math Oper Res., 18 (1993), 227.  doi: 10.1287/moor.18.1.227.  Google Scholar

[7]

J. Z. Wang and W. J. Chen, Mixed fixed-Point FE method for seepage problems with free surfaces,, Journal of Dalian University of Technology, 47 (2007), 793.   Google Scholar

[8]

Y. T. Zhang, P. Chen and L. Wang, Initial flow method for seepage analysis with free surface,, Chinese journal of Hydraulic, 8 (1988), 18.   Google Scholar

[9]

H. Zheng et al., A new formulation of Signorini's type for seepage problems with free surface,, International Journal for Numerical methods in engineering, (2005).   Google Scholar

[1]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[2]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[9]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[10]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[11]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

 Impact Factor: 

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]